• 제목/요약/키워드: High-pressure deposition

검색결과 566건 처리시간 0.072초

Substrate Temperature Dependence of Microcrystalline Silicon Thin Films by Combinatorial CVD Deposition

  • Kim, Yeonwon
    • 한국표면공학회지
    • /
    • 제48권3호
    • /
    • pp.126-130
    • /
    • 2015
  • A high-pressure depletion method using plasma chemical vapor deposition (CVD) is often used to deposit hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films of a low defect density at a high deposition rate. To understand proper deposition conditions of ${\mu}c-Si:H$ films for a high-pressure depletion method, Si films were deposited in a combinatorial way using a multi-hollow discharge plasma CVD method. In this paper the substrate temperature dependence of ${\mu}c-Si:H$ film properties are demonstrated. The higher substrate temperature brings about the higher deposition rate, and the process window of device quality ${\mu}c-Si:H$ films becomes wider until $200^{\circ}C$. This is attributed to competitive reactions between Si etching by H atoms and Si deposition.

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

SiH$_4$를 이용한 텅스텐의 화학증착시 압력증가가 증착에 미치는 영향 (The Effect of Pressure Increase on the Deposition of Tungsten by CVD using SiH4)

  • 박재현;이정중;금동화
    • 한국표면공학회지
    • /
    • 제26권1호
    • /
    • pp.3-9
    • /
    • 1993
  • Chemical vapor deposited tungsten films were formed in a cold wall reactor at pressures higher (10~120torr) than those conventionally employed (<1torr). SiH4, in addition to H2, was used as the reduction gas. The effects of pressure and reaction temperature on the deposition rate and morphology of the films were ex-amined under the above conditions. No encroachment or silicon consumption was observed in the tungsten de-posited specimens. A high deposition rate of tungsten and a good step coverage of the deposited films were ob-tained at 40~80 torr and at a temperature range of $360~380^{\circ}C$. The surface roughness and the resistivity of the deposited film increased with pressure. The deposition rate of tungsten increased with the total pressure in the reaction chamber when the pressure was below 40 torr, whereas it decreased when the total pressure ex-ceedeed 40 torr. The deposition rate also showed a maximum value at $360^{\circ}C$ regardless of the gas pressure in the chamber. The results suggest that the deposition mechanism varies with pressure and temperature, the surface reac-tion determines the overall reaction rate and (2) at higher pressures(>40 torr) or temperatures(>36$0^{\circ}C$), the rate is controlled by the dtransportation rate of reactive gas molecules. It was shown from XRD analysis that WSi2 and metastable $\beta$-W were also formed in addition to W by reactions between WF6 and SiH4.

  • PDF

27.12MHz PECVD에 의해 증착된 uc-Si의 I층 공정 파라미터 연구 (Study of I layer deposition parameters of deposited micro-crystalline silicon by PECVD at 27.12MHz)

  • 이기세;김선규;김선영;김상호;김건성;김범준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.66.1-66.1
    • /
    • 2010
  • Microcrystalline silicon at low temperatures has been developed using plasma enhanced chemical vapor deposition (PECVD). It has been found that energetically positive ion and atomic hydrogen collision on to growing surface have important effects on increasing growth rate, and atomic hydrogen density is necessary for the increasing growth rate correspondingly, while keeping ion bombardment is less level. Since the plasma potential is determined by working pressure, the ion energy can be reduced by increasing the deposition pressure of 700-1200 Pa. Also, correlation of the growth rate and crystallinity with deposition parameters such as working pressure, hydrogen flow rate and input power were investigated. Consequently an efficiency of 7.9% was obtained at a high growth rate of 0.92 nm/s at a high RF power 300W using a plasma-enhanced chemical vapor deposition method (27.12MHz).

  • PDF

PLD를 이용한 레이저 드롭릿 없는 고온 초전도 박막의 형성 (Laser-Droplet Free high-$T_c$ Superconducting thin films by Pulsed Laser Deposition)

  • 황의현;김희권;문병무
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.361-363
    • /
    • 1995
  • High quality $Y_1Ba_2Cu_3O_{7-x}$ thin films have been fabricated by pulsed Nd:YAG laser deposition using an unusual 'off-axis' target-substrate geometry. Various properties of superconducting $Y_1Ba_2Cu_3O_{7-x}$ thin films have been studied systematically as a function of oxygen pressure during the deposition, in both 'on-axis' and the unusual 'off-axis' target substrate geometry. In the 'off-axis' geometry, one can completely eliminate the so-called 'laser droplets' form the thin surface and thus obtain smooth high qualify films. It is found that films with optimum structural and electrical properties are obtained at a lower oxygen pressure range during the 'off-axis' deposition when compared with that required in the 'on-axis' deposition geometry.

  • PDF

다공성 금속 샤워헤드가 적용된 상압플라즈마 화학기상증착법을 이용한 저온 다결정 실리콘 증착 공정 (Low Temperature Polycrystalline Silicon Deposition by Atmospheric Pressure Plasma Enhanced CVD Using Metal Foam Showerhead)

  • 박형규;송창훈;오훈정;백승재
    • 한국전기전자재료학회논문지
    • /
    • 제33권5호
    • /
    • pp.344-349
    • /
    • 2020
  • Modern thin film deposition processes require high deposition rates, low costs, and high-quality films. Atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) meets these requirements. AP-PECVD causes little damage on thin film deposition surfaces compared to conventional PECVD. Moreover, a higher deposition rate is expected due to the surface heating effect of atomic hydrogens in AP-PECVD. In this study, polycrystalline silicon thin film was deposited at a low temperature of 100℃ and then AP-PECVD experiments were performed with various plasma powers and hydrogen gas flow rates. A deposition rate of 15.2 nm/s was obtained at the VHF power of 400 W. In addition, a metal foam showerhead was employed for uniform gas supply, which provided a significant improvement in the thickness uniformity.

Protective SiC Coating on Carbon Fibers by Low Pressure Chemical Vapor Deposition

  • Bae, Hyun Jeong;Kim, Baek Hyun;Kwon, Do-Kyun
    • 한국재료학회지
    • /
    • 제23권12호
    • /
    • pp.702-707
    • /
    • 2013
  • High-quality ${\beta}$-silicon carbide (SiC) coatings are expected to prevent the oxidation degradation of carbon fibers in carbon fiber/silicon carbide (C/SiC) composites at high temperature. Uniform and dense ${\beta}$-SiC coatings were deposited on carbon fibers by low-pressure chemical vapor deposition (LP-CVD) using silane ($SiH_4$) and acetylene ($C_2H_2$) as source gases which were carried by hydrogen gas. SiC coating layers with nanometer scale microstructures were obtained by optimization of the processing parameters considering deposition mechanisms. The thickness and morphology of ${\beta}$-SiC coatings can be controlled by adjustment of the amount of source gas flow, the mean velocity of the gas flow, and deposition time. XRD and FE-SEM analyses showed that dense and crack-free ${\beta}$-SiC coating layers are crystallized in ${\beta}$-SiC structure with a thickness of around 2 micrometers depending on the processing parameters. The fine and dense microstructures with micrometer level thickness of the SiC coating layers are anticipated to effectively protect carbon fibers against the oxidation at high-temperatures.

DC Magnetron Sputtering에 의한 ATO 박막의 제조 (I)증착특성 (Preparation of ATO Thin Films by DC Magnetron Sputtering (I) Deposition Characteristics)

  • 윤천;이혜용;정윤중
    • 한국세라믹학회지
    • /
    • 제33권4호
    • /
    • pp.441-447
    • /
    • 1996
  • Sb doped SnO2(ATO:Antinomy doped Tin Oxide) thin films were prepared by a DC magnetron spttuering method using oxide target and the deposition characteristics were investigated. The experimental conditions are as follows :Ar flow rate : 100 sccm oxygen flow rates ; 0-100 sccm deposition temperature ; 250 -40$0^{\circ}C$ DC sputter powder ; 150~550 W and sputtering pressure ; ; 2~7 mTorr. Deposition rate greatly depends not on the deposition temperature but on the reaction pressure oxygen flow rate and sputter power,. when the sputter powder is low ATO thin films with (110) preferred orientation are deposited. And when the sputter power is high (110) prefered orientation appeares with decreasing of oxygen flow rate and increasing of suputte-ring pressure.

  • PDF

고효율 태양전지용 a-IZO 박막의 전기적 및 광학적 특성 최적화에 관한 연구 (Optimization of Electrical and Optical Properties of a-IZO Thin Film for High-Efficiency Solar Cells )

  • 박소민;정성진;최지원;김영국;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제36권1호
    • /
    • pp.49-55
    • /
    • 2023
  • The deposition of indium zinc oxide (IZO) thin films was carried out on substrate at room temperature by RF magnetron sputtering. The effects of substrate temperature, RF power and deposition pressure were investigated with respect to physical and optical properties of films such as deposition rate, electrical properties, structure, and transmittance. As the RF power increases, the resistivity gradually decreases, and the transmittance slightly decreases. For the variation of deposition pressure, the resistivity greatly increases, and the transmittance is decreased with increasing deposition pressure. As a result, it was demonstrated that an IZO film with the resistivity of 3.89 × 10-4 Ω∙cm, the hole mobility of 51.28 cm2/Vs, and the light transmittance of 86.89% in the visible spectrum at room temperature can be prepared without post-deposition annealing.

고농도 ge fraction을 갖는 $Si_{1-x}Ge_{x}$ 막의 epitaxial growth에 대한 in-situ phosphorus doping 효과 (In-situ phosphorus doping effect on epitaxial growth of $Si_{1-x}Ge_{x}$ film with high ge fraction)

  • 이철진;박정훈;김성진
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.437-440
    • /
    • 1998
  • We studied phosphorus doping effect on the epitaxial growth of $Si_{1-x}Ge_{x}$ film with high Ge fraction on Si substates at 550.deg. C by LPCVD. In a low $Ph_{3}$ partial pressure region such as below 1.25 mPa, the phosphorus dopant concentration increased linearly with increasing $PH_{3}$ partial pressure while the deposition rate and the Ge fraction were constant. In a higher $PH_{3}$ partial pressure region, the phosphorus dopant concentration and the deposition rate decreased, while the Ge fraction slightly increased. The deposition arate and the Ge fraction increased with increasing $GeH_{4}$ partial pressure while the phophours dopant concentration decreased. But the increasing rate of Ge fraction with incrasing $PH_{3}$ partial pressure was reduced at a high $GeH_{4}$ partial pressure. According to test results, it suggests that high surface coverage of phosphorus atoms suppress both the $SiH_{4}$ adsorption/reasction and the $GeH_{4}$ adsorption/reaction on the surfaces, and the effect is more stronger on $SiH_{4}$ than on $GeH_{4}$. In a higher $PH_{3}$ partial pressure region, the epitaxial growth is largely controlled by surface coverage effect of phosphorus atoms. The phosphorus surface coverage was slimited at a high $GeH_{4}$ partial pressure because adsorbed Ge atoms effectively suppresses the adsorption of phosphorus atoms.

  • PDF