Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.5.344

Low Temperature Polycrystalline Silicon Deposition by Atmospheric Pressure Plasma Enhanced CVD Using Metal Foam Showerhead  

Park, Hyeong-Gyu (IT Convergence Institute, Hankyong National University)
Song, Chang-Hoon (Department of Materials Science & Engineering, Yonsei University)
Oh, Hoon-Jung (Bio-IT Micro FAB Center, Yonsei University)
Baik, Seung Jae (IT Convergence Institute, Hankyong National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.5, 2020 , pp. 344-349 More about this Journal
Abstract
Modern thin film deposition processes require high deposition rates, low costs, and high-quality films. Atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) meets these requirements. AP-PECVD causes little damage on thin film deposition surfaces compared to conventional PECVD. Moreover, a higher deposition rate is expected due to the surface heating effect of atomic hydrogens in AP-PECVD. In this study, polycrystalline silicon thin film was deposited at a low temperature of 100℃ and then AP-PECVD experiments were performed with various plasma powers and hydrogen gas flow rates. A deposition rate of 15.2 nm/s was obtained at the VHF power of 400 W. In addition, a metal foam showerhead was employed for uniform gas supply, which provided a significant improvement in the thickness uniformity.
Keywords
Atmospheric pressure plasma; Polycrystalline silicon; Metal foam;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Ambrosone, U. Coscia, S. Lettieri, P. Maddalena, M. Ambrico, G. Perna, and C. Minarini, Thin Solid Films, 511, 280 (2006). [DOI: https://doi.org/10.1016/j.tsf.2005.12.110]   DOI
2 S. E. Alexandrov and M. L. Hitchman, Chem. Vap. Deposition, 11, 457 (2005). [DOI: https://doi.org/10.1002/cvde.200500026]   DOI
3 F. Massines, C. Sarra-Bournet, F. Fanelli, N. Naude, and N. Gherardi, Plasma Processes Polym., 9, 1041 (2012). [DOI: https://doi.org/10.1002/ppap.201200029]   DOI
4 K. Yasutake, H. Kakiuchi, H. Ohmi, K. Inagaki, Y. Oshikane, and M. Nakano, J. Phys.: Condens. Matter, 23, 394205 (2011). [DOI: https://doi.org/10.1088/0953-8984/23/39/394205]   DOI
5 H. Ohmi, H. Kakiuchi, K. Yasutake, Y. Nakahama, Y. Ebata, K. Yoshii, and Y. Mori, Jpn. J. Appl. Phys., 45, 3581 (2006). [DOI: https://doi.org/10.1143/JJAP.45.3581]   DOI
6 G. Kim, S. Park, H. Shin, S. Song, H. J. Oh, D. H. Ko, J. I. Choi, and S. J. Baik, AIP Adv., 7, 125310 (2017). [DOI: https://doi.org/10.1063/1.4996797]   DOI
7 H. Kakiuchi, H. Ohmi, and K. Yasutake, J. Vac. Sci. Technol., A32, 030801 (2014). [DOI: https://doi.org/10.1116/1.4828369]
8 H. Kakiuchi, H. Ohmi, T. Yamada, A. Hirano, T. Tsushima, and K. Yasutake, Journal of Physics: ConferenceSeries, 417, 012052 (2013). [DOI: https://doi.org/10.1088/1742-6596/417/1/012052]   DOI
9 H. Ohmi, H. Kakiuchi, Y. Hamaoka, and K. Yasutake, J. Appl. Phys., 102, 023302 (2007). [DOI: https://doi.org/10.1063/1.2753675]   DOI