• Title/Summary/Keyword: High-order modes

Search Result 321, Processing Time 0.041 seconds

High-order, closely-spaced modal parameter estimation using wavelet analysis

  • Le, Thai-Hoa;Caracoglia, Luca
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.423-442
    • /
    • 2015
  • This study examines the wavelet transform for output-only system identification of ambient excited engineering structures with emphasis on its utilization for modal parameter estimation of high-order and closely-spaced modes. Sophisticated time-frequency resolution analysis has been carried out by employing the modified complex Morlet wavelet function for better adaption and flexibility of the time-frequency resolution to extract two closely-spaced frequencies. Furthermore, bandwidth refinement techniques such as a bandwidth resolution adaptation, a broadband filtering technique and a narrowband filtering one have been proposed in the study for the special treatments of high-order and closely-spaced modal parameter estimation. Ambient responses of a 5-story steel frame building have been used in the numerical example, using the proposed bandwidth refinement techniques, for estimating the modal parameters of the high-order and closely-spaced modes. The first five natural frequencies and damping ratios of the structure have been estimated; furthermore, the comparison among the various proposed bandwidth refinement techniques has also been examined.

Failure Modes and Effects Analysis for Electric Power Installations of D University (D대학 수변전설비의 고장모드 영향 분석)

  • Park, Young Ho;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.7-15
    • /
    • 2016
  • The purpose of this paper is to carry out Failure Modes and Effects Analysis (FMEA) and use criticality in order to determine risk priority number of the components of electric power installations in Engineering college building of D university. In risk priority number, GROUP A had 7 failure modes; more specifically, Transfomer had 4 modes, Filter(C)(1 mode), LA(1 mode), and CB(MCCB)(1 mode), and thus 4 components had failure modes. In terms of criticality, high-grade group a total of 16 failure modes, and 7 components-LA(1 mode), CB(MCCB)(1 mode), MOF(2 modes), PT(1 mode), Transformer(7 modes), Cable(3 modes), and Filter(C)(1 mode)-had failure modes. Comparison of risk priority number and criticality was made. The components which had high risk priority number and high criticality were Transformer, Filter(C), LA, and CB(MCCB). The components which had high criticality were MOF and cable. In particular, Transformer(RPN: 4 modes, Criticality: 7 modes) was chosen as an intensive management component.

Model Order Reduction for Mid-Frequency Response Analysis (중주파수 응답해석을 위한 축소 기법)

  • Ko, Jin-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.135-138
    • /
    • 2009
  • Most of the studies use model order reduction for low frequency (LF) response analysis due to their high computational efficiency. In LF response analysis, one of model order reduction, algebraic substructuring (AS) retains all LF modes when using the modal superposition. However, in mid-frequency (MF) response analysis, the LF modes make very little contribution and also increase the number of retained modes, which leads to loss of computational efficiency. Therefore, MF response analysis should consider low truncated modes to improve the computational efficiency. The current work is focused on improving the computational efficiency using a AS and a frequency sweep algorithm. Finite element simulation for a MEMS resonator array showed that the performance of the presented method is superior to a conventional method.

  • PDF

Modified Mode Matching Technique for Analyzing Simple Expansion Chamber with Arbitrary Inlet/Outlet Location (임의의 입ㆍ출구 위치를 가지는 소음기 해석을 위한 개선된 모드일치법)

  • Kim, Bong-Jun;Jeong, Ui-Bong;Lee, Jeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1314-1322
    • /
    • 2000
  • The acoustic property of reactive type single expansion chamber can be analyzed by traditional plane wave theory. This theory can be applied in low frequency range and has good performance. But this theory can't include higher order modes, therefore another method is essential to analyze acoustic filter in high frequency range. Many researcher suggested the method that can concern higher order modes, and their methods are using mode matching technique. But there is no method that can be applied to the analysis of single expansion chamber with arbitrary inlet/outlet duct position and numbers of higher order modes of inlet/outlet duct and middle chamber. In this paper, the method which can analyze single expansion chamber with arbitrary inlet/outlet duct position and numbers of higher order modes of inlet/outlet duct and middle chamber using fundamental mode matching technique, was suggested and the predictions by this method was compared with those by the finite element method, and the influence of inlet/outlet location to acoustic performance of single expansion chamber is investigated and explained by higher order mode effects.

Intra Prediction Algorithm Using Adaptive Modes (적응모드를 이용한 화면 내 부호화 알고리즘)

  • Lim, Kyungmin;Lee, Jaeho;Kim, Seongwan;Pak, Daehyun;Lee, Sangyoun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.492-503
    • /
    • 2013
  • H.264/AVC has shown high coding efficiency by using various coding tools, including intra and inter prediction. However, there are still many more redundancy components in intra prediction than in inter prediction. In this paper, a novel intra prediction method is proposed with adaptive mode selection. The combined intra prediction modes and simplified gradient modes are added in order to refine the directional feature and gradation region. Suitable modes are selected according to the neighboring blocks that provide a high compression rate and lower computational complexity. The improvement of the proposed method is 1.96% in terms of the bitrate, 0.25 dB in PSNR, and 1.72 times in terms of the computational complexity.

Modal-based model reduction and vibration control for uncertain piezoelectric flexible structures

  • Yalan, Xu;Jianjun, Chen
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.489-504
    • /
    • 2008
  • In piezoelectric flexible structures, the contribution of vibration modes to the dynamic response of system may change with the location of piezoelectric actuator patches, which means that the ability of actuators to control vibration modes should be taken into account in the development of modal reduction model. The spatial $H_2$ norm of modes, which serves as a measure of the intensity of modes to system dynamical response, is used to pick up the modes included in the reduction model. Based on the reduction model, the paper develops the state-space representation for uncertain flexible tructures with piezoelectric material as non-collocated actuators/sensors in the modal space, taking into account uncertainties due to modal parameters variation and unmodeled residual modes. In order to suppress the vibration of the structure, a dynamic output feedback control law is designed by imultaneously considering the conflicting performance specifications, such as robust stability, transient response requirement, disturbance rejection, actuator saturation constraints. Based on linear matrix inequality, the vibration control design is converted into a linear convex optimization problem. The simulation results show how the influence of vibration modes on the dynamical response of structure varies with the location of piezoelectric actuators, why the uncertainties should be considered in the reductiom model to avoid exciting high-frequency modes in the non-collcated vibration control, and the possiblity that the conflicting performance specifications are dealt with simultaneously.

Seismic response of steel reinforced concrete frame-bent plant of CAP1400 nuclear power plant considering the high-mode vibration

  • Biao Liu;Zhengzhong Wang;Bo Zhang;Ningjun Du;Mingxia Gao;Guoliang Bai
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.221-236
    • /
    • 2023
  • In order to study the seismic response of the main plant of steel reinforced concrete (SRC) structure of the CAP1400 nuclear power plant under the influence of different high-mode vibration, the 1/7 model structure was manufactured and its dynamic characteristics was tested. Secondly, the finite element model of SRC frame-bent structure was established, the seismic response was analyzed by mode-superposition response spectrum method. Taking the combination result of the 500 vibration modes as the standard, the error of the base reactions, inter-story drift, bending moment and shear of different modes were calculated. Then, based on the results, the influence of high-mode vibration on the seismic response of the SRC frame-bent structure of the main plant was analyzed. The results show that when the 34 vibration modes were intercepted, the mass participation coefficient of the vertical and horizontal vibration mode was above 90%, which can meet the requirements of design code. There is a large error between the seismic response calculated by the 34 and 500 vibration modes, and the error decreases as the number of modes increases. When 60 modes were selected, the error can be reduced to about 1%. The error of the maximum bottom moment of the bottom column appeared in the position of the bent column. Finally, according to the characteristics of the seismic influence coefficient αj of each mode, the mode contribution coefficient γj•Xji was defined to reflect the contribution of each mode to the seismic action.

Use of High Order Vibration Modes for Design of Piezo Energy Harvester (압전 발전기의 설계를 위한 고차 모드의 활용)

  • Hwang, Woo-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.372-376
    • /
    • 2012
  • The most common type of the piezoelectric energy harvester is the cantilevered beam since it is attached to the host structure and tuned to the frequency of the base excitation easily. However, the excessive strain at the fixed end of cantilevered beam causes some problems such as fatigue and durability. The use of higher vibration modes of the cantilevered beam may reduce the concentration of the strain at the fixed end since the strains of higher modes are distributed along the span. The results show that the use of high vibration mode is not efficient for power generation, but it reduces the excessive strain lever at typical region to prevent the failure by fatigue.

Investigation of Shape Accuracy in the Forming of a Thin-walled S-rail with Classification of Springback Modes (스프링백 모드분류를 통한 박판 S-rail 성형공정의 형상정밀도 고찰)

  • Jung, D.G.;Kim, S.H.;Kim, M.S.;Lee, T.G.;Kim, H.K.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.477-485
    • /
    • 2013
  • This paper aims to evaluate quantitatively the springback characteristics that evolve in the sheet metal forming of an S-rail in order to understand the reasons of shape inaccuracy and to find a remedy. The geometrical springback is classified into six modes: angle change of punch and die shoulders, wall curl, ridge curl, section twist, and axial twist. The measuring method for each springback mode is suggested and quantitative measurements were made to determine the tendency towards shape accuracy. Forming experiments were conducted with four types of steel sheets that have different tensile strengths, which were 340MPa, 440MPa, 590MPa and 780MPa, in order to evaluate the effect of the tensile strength and the bead shape on the springback behavior. Springback tendencies show that they are greatly affected by the tensile strength of the sheet and the shape of the tools. Almost all springback modes except the section twist and the axial twist show a linearly increasing trend as the tensile strength of the sheet increases. The results can be used as basic data for design and for compensation of the press die geometry when forming high strength steels which exhibit large amounts of springback.

A Vibration-Rejection Control for a Magnetic Suspension System

  • Kim, Jong-moon;Kim, Choon-kyung;Park, Min-kook;Kim, Seog-joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.37.4-37
    • /
    • 2001
  • This paper presents a vibration-rejection control design for a magnetic suspension system which has strong non-linearity, open-loop unstable characteristics, high-order flexible modes, and parameter variations. The target plant to be controlled consists of a U-core electromagnet and a flexible rail. We describe the test rig and formulate the mathematical model and then we set up a control problem as the mixed sensitivity problem where the augmented plant is constructed with frequency weighting functions and the feedback controller is designed by using the H$\infty$ controller. The effectiveness of the designed controller for the magnetic suspension system with high-order flexible modes is validated and justified using several simulations. These results show that the magnetic suspension system is robustly stable against disturbance and gives the well-damped tracking performance ...

  • PDF