• Title/Summary/Keyword: High-loading

Search Result 3,246, Processing Time 0.047 seconds

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

Seismic Performance Evaluation on Bending Deformation of 2-Ply and 3-Ply Bellows Expansion Pipe Joints (2겹 및 3겹 벨로우즈 신축배관이음의 휨 변형에 대한 내진성능평가 )

  • Sung-Wan Kim;Sung-Jin Chang;Dong-Uk Park;Bub-Gyu Jeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.33-41
    • /
    • 2023
  • The application of seismic separation joints that can improve the deformation capacity of piping is an effective way to improve seismic performance. Seismic separation joints capable of axial expansion and bending deformation are installed where deformation is expected and used for the purpose of safely protecting the piping. Bellows are flexible and have low stiffness, so they can be used as seismic separation joints because they have excellent ability to respond to relatively large deformation. In this study, the seismic performance and limit state for bending deformation of 2-ply and 3-ply bellows specimens were evaluated. Seismic performance was evaluated by applying an increasing cyclic load to consider low-cycle fatigue due to seismic load. In order to confirm the margin for the limit state of the evaluated seismic performance, an experiment was conducted in which a cyclic loading of constant amplitude was applied. As a result of the experiment, it was confirmed that the bellows specimen was made of stainless steel and had a high elongation, so that the 2-ply bellows specimen had the limit performance of resisting within 3 cycles even at the maximum forced displacement of the 3-ply bellows specimen.

Coefficients of Moment Equations for Long-Span Soil-Metal Box Structures (장지간 지중강판 박스구조물의 휨모멘트 계수식 제안)

  • Choi, Dong Ho;Lee, Seung Jae;Cho, Yong Woo;Park, Sang Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.133-142
    • /
    • 2006
  • This paper evaluates the moment equations in the 2000 Canadian highway bridge code (CHBDC) for soil-metal box structures, which are applicable to the span less than 8 m. Finite element analyses carried out for soil-metal box structures having spans of 3-12 m using the deep corrugated metal plates under three construction stages; backfill up to the crown, backfill up to the cover depth, and live loading. The coefficients of moment equations are newly proposed based on the results of numerous finite element analyses considering various design variables, such as span length, soil depth, backfill conditions. The validity of the proposed coefficients in the moment equations of the 2000 CHBDC is investigated by the comparison with the existing coefficients and numerical results of finite element analyses. The comparisons show that the moments of the 2000 CHBDC give good predictions for the span less than 8m, but underestimate for the span greater than 8m, whereas the proposed moments give good estimates of numerical results for the spans of 3-12 m. In addition, this study suggests the use of high strength steel to satisfy the requirement of design bending strength for the span greater than 8 m.

Carbon Nanosphere Composite Ultrafiltration Membranes with Anti-Biofouling Properties and More Porous Structures for Wastewater Treatment Using MBRs (분리막 생물반응기를 활용한 폐수처리를 위한 생물오염방지 특성 및 다공성 구조를 가진 탄소나노구체 복합 한외여과막)

  • Jaewoo Lee
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.38-49
    • /
    • 2024
  • Wastewater treatment using membrane bioreactors has been extensively used to alleviate water shortage and pollution by improving the quality of the treated water discharged into the environment. However, membrane biofouling persistently holds back an MBR process by reducing the process efficiency. Herein, we synthesized carbon nanospheres (CNSs) with many hydrophilic oxygen groups and utilized them as an additive to prepare high-performance ultrafiltration (UF) membranes with hydrophilicity and porous pore structure. CNSs were found to form crescent-shaped pores on the membrane surface, increasing the mean surface pore size by about 40% without causing significant defects larger than bubble points, as the CNS content increased by 4.6 wt%. In addition, the porous pore structure of CNS composite membranes was also attributable to the CNS's isotropic morphologies and relatively low particle number density because the aforementioned properties contributed to preventing the polymer solution viscosity from soaring with the loading of CNS. However, too porous structure compromised the mechanical properties, such that CNS2.3 was the best from a comprehensive consideration including the pore structure and mechanical properties. As a result, CNS2.3 showed not only 2 times higher water permeability than CNS0 but also 5 times longer operation duration until membrane cleaning was required.

Nonlinear dynamic properties of dynamic shear modulus ratio and damping ratio of clay in the starting area of Xiong'an New Area

  • Song Dongsong;Liu Hongshuai
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.97-115
    • /
    • 2024
  • In this paper, a database consisting of the dynamic shear modulus ratio and damping ratio test data of clay obtained from 406 groups of triaxial tests is constructed with the starting area of Xiong'an New Area as the research background. The aim is to study the nonlinear dynamic properties of clay in this area under cyclic loading. The study found that the effective confining pressure and plasticity index have certain influences on the dynamic shear modulus ratio and damping ratio of clay in this area. Through data analysis, it was found that there was a certain correlation between effective confining pressure and plasticity index and dynamic shear modulus ratio and damping ratio, with fitting degree values greater than 0.1263 for both. However, other physical indices such as the void ratio, natural density, water content and specific gravity have only a small effect on the dynamic shear modulus ratio and the damping ratio, with fitting degree values of less than 0.1 for all of them. This indicates that it is important to consider the influence of effective confining pressure and plasticity index when studying the nonlinear dynamic properties of clays in this area. Based on the above, prediction models for the dynamic shear modulus ratio and damping ratio in this area were constructed separately. The results showed that the model that considered the combined effect of effective confining pressure and plasticity index performed best. The predicted dynamic shear modulus ratio and damping ratio closely matched the actual curves, with approximately 88% of the data falling within ±1.3 times the measured dynamic shear modulus ratio and approximately 85.1% of the data falling within ±1.3 times the measured damping ratio. In contrast, the prediction models that considered only a single influence deviated from the actual values, particularly the model that considered only the plasticity index, which predicted the dynamic shear modulus ratio and the damping ratio within a small distribution range close to the average of the test values. When compared with existing prediction models, it was found that the predicted dynamic shear modulus ratio in this paper was slightly higher, which was due to the overall hardness of the clay in this area, leading to a slightly higher determination of the dynamic shear modulus ratio by the prediction model. Finally, for the dynamic shear modulus ratio and damping ratio of the engineering site in the starting area of Xiong'an New Area, we confirm that the prediction formulas established in this paper have high reliability and provide the applicable range of the prediction model.

Development of hydro-mechanical-damage coupled model for low to intermediate radioactive waste disposal concrete silos (방사성폐기물 처분 사일로의 손상연동 수리-역학 복합거동 해석모델 개발)

  • Ji-Won Kim;Chang-Ho Hong;Jin-Seop Kim;Sinhang Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.191-208
    • /
    • 2024
  • In this study, a hydro-mechanical-damage coupled analysis model was developed to evaluate the structural safety of radioactive waste disposal structures. The Mazars damage model, widely used to model the fracture behavior of brittle materials such as rocks or concrete, was coupled with conventional hydro-mechanical analysis and the developed model was verified via theoretical solutions from literature. To derive the numerical input values for damage-coupled analysis, uniaxial compressive strength and Brazilian tensile strength tests were performed on concrete samples made using the mix ratio of the disposal concrete silo cured under dry and saturated conditions. The input factors derived from the laboratory-scale experiments were applied to a two-dimensional finite element model of the concrete silos at the Wolseong Nuclear Environmental Management Center in Gyeongju and numerical analysis was conducted to analyze the effects of damage consideration, analysis technique, and waste loading conditions. The hydro-mechanical-damage coupled model developed in this study will be applied to the long-term behavior and stability analysis of deep geological repositories for high-level radioactive waste disposal.

Enhancement of biogas production from swine slurry using the underground anaerobic digester (돈슬러리 지하혐기소화조의 바이오가스생산효율에 관한 연구)

  • Suresh, Arumuganainar;Choi, Hong Lim;Kim, Jae Hwan;Chung, In
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.112-121
    • /
    • 2009
  • To obtain basic design criteria for underground anaerobic digestion and enhance biogas production from swine slurry, a $20m^3$ underground anaerobic digester (UGAD) was constructed and operated at mesophilic ($31{\sim}37^{\circ}C$) temperature with an organic loading rate (OLR) at $23.6kgVS/m^3/day$. The average biogas and $CH_4$ production rate were observed at 8.62 and $5.78m^3/day$, respectively. The mean percentile of $CH_4$ and $CO_2$ were also observed at 67.5% and 19.6%. The relative biogas yield was explored at $733L/kg\;VS_{added}$ and $CH_4$ yield was at $495L/kg\;VS_{added}$ respectively. The removal rate of biochemical constituents and pathogens were noticed considerably at 68%, 74%, 79%, 86%, 89%, 81%, 55%, 79%, 98% and 100% on TS, VS, TSS, $BOD_5$, $TCOD_{cr}$, $SCOD_{cr}$, $NH_3-N$, available P, fecal coliforms and Salmonella, respectively. This study suggested that, the modified UGAD system is a greatly desirable for anaerobic digestion for swine slurry with regards to high methane yield and biodegradability.

On the manufacturing of WPC (Wood Plastic Composites) with Heat-Catalyst Polymerization (I) - On the characteristics of composites made from monomer Methyl MethacryIate and several commercial woods in Korea (가열(加熱)·촉매중합법(觸媒重合法)에 의한 목재(木材)·고분자복합체(高分子複合體) 제조(製造)(I) - MMA에 의한 한국산(韓國産) 주요목재(主要木材)의 복합체특성(複合體特性))

  • Cho, Nam-Seok;Jo, Jae-Myeong;Ahn, Won-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.3-16
    • /
    • 1974
  • One of the disadvantages of. wood and wood products is their hydroscopicity or dimensional instability. This is responsible for the loss of green volume of lumber as seasoning degrade. Dimensional stabilization is needed to substantially reduce seasoning defects and degrades and for increasing the serviceability of wood products. Recently, considerable world-wide attention has been drawn to the so-called Wood-Plastic Composites by irradiation-and heat-catalyst-polymerization methods and many research and developmental works have been reported. Wood-Plastic Composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC. The species examined were Mulpurae-Namoo (Fraxinus, rhynchophylla), Sea-Namoo (Carpinus laxiflora), Cheungcheung-Namoo (Cornus controversa), Gorosae-Namoo (Acermono), Karae-Namoo(Juglans mandshurica) and Sanbud-Namoo (Prunus sargentii), used as blocks of type A ($3{\times}3{\times}40cm$) and type B ($5{\times}5{\times}60cm$), and were conditioned to about 10~11% moisture content before impregnation in materials humidity control room. Methyl methacrylate (MMA) as monomer and benzoyl peroxide (BPO) as initiator are used. The monomer containing BPO was impregnated into wood pieces in the vacuum system. After impregnation, the treated samples were polymerized with heat-catalyst methods. The immersed weights of monomer in woods are directly proportionated to the impregnation times. Monomer impregnation properties of Cheungcheung-Namoo, Mulpurae-Namoo and Seo-Namoo are relatively good, but in Karae-Namoo, it is very difficult to impregnate the monomer MMA. Fig. 3 shows the linear relation between polymer retentions in wood and polymerization times; that is, the polymer loadings are increasing with polymerization times. Furthermore species, moisture content, specific gravity and anatomical or conductible structure of wood, bulking solvents and monomers etc have effects on both of impregnation of monomer and polymer retention. Physical properties of treated materials are shown in table 3. Increasing rates of specific gravity are ranged 3 to 24% and volume swelling 3 to 10%. ASE is 20 to 46%, AE 14 to 50% and RWA 18 to 40%. Especially, the ASE in relation to absorption of liquid water increases approximately with increase of polymer content, although the bulking effect of the polymerization of monomer may also be influential. WPCs from Mulpurae-Namoo and Cheungcheung-Namoo have high dimensional stability, while its of Karae-Namoo and Seo-Namoo are-very low. Table 4 shows the mechanical properties of WPCs from 6 species. With its specific gravity and polymer loading increase, all mechanical properties are on the increase. Increasing rate of bending strength is 10 to 40%, compression strength 25 to 70%, ;impact bending absorbed energy 4 to 74% and tensile strength 18 to 56%. Mulpurae-Namoo and Cheungcheung-Namoo with high polymer content have considerable high increasing rate of strengths. But incase of Karae-Namoo with inferior monomer impregnation it is very low. Polymer retention in cell wall is 0.32 to 0.70%. Most of the polymer is accumulated in cell lumen. Effective. of polymer retention is 58.59% for Mulpurae-Namoo, 26.27% for Seo-Namoo, 47.98% for Cheungcheung-Namoo, 25.64% for Korosae-Namoo, 9.96% for Karae-Namoo and 25.84% for Sanbud-Namoo.

  • PDF

An Analysis on the Episodes of Large-scale Transport of Natural Airborne Particles and Anthropogenically Affected Particles from Different Sources in the East Asian Continent in 2008 (2008년 동아시아 대륙으로부터 기원이 다른 먼지와 인위적 오염 입자의 광역적 이동 사례에 대한 분석)

  • Kim, Hak-Sung;Yoon, Ma-Byong;Sohn, Jung-Joo
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.600-607
    • /
    • 2010
  • In 2008, multiple episodes of large-scale transport of natural airborne particles and anthropogenically affected particles from different sources in the East Asian continent were identified in the National Oceanic and Atmospheric Administration (NOAA) satellite RGB-composite images and the mass concentrations of ground level particulate matters. To analyze the aerosol size distribution during the large-scale transport of atmospheric aerosols, both aerosol optical depth (AOD; proportional to the aerosol total loading in the vertical column) and fine aerosol weighting (FW; fractional contribution of fine aerosol to the total AOD) of Moderate resolution Imaging Spectroradiometer (MODIS) aerosol products were used over the East Asian region. The six episodes of massive natural airborne particles were observed at Cheongwon, originating from sandstorms in northern China, Mongolia and the loess plateau of China. The $PM_{10}$ and $PM_{2.5}$ stood at 70% and 16% of the total mass concentration of TSP, respectively. However, the mass concentration of $PM_{2.5}$ among TSP increased as high as 23% in the episode in which they were flowing in by way f the industrial area in east China. In the other five episodes of anthropogenically affected particles that flowed into the Korean Peninsula from east China, the mass concentrations of $PM_{10}$ and $PM_{2.5}$ among TSP reached 82% and 65%, respectively. The average AOD for the large-scale transport of anthropogenically affected particle episodes in the East Asian region was measured at $0.42{\pm}0.17$ compared with AOD ($0.36{\pm}0.13$) for the natural airborne particle episodes. Particularly, the regions covering east China, the Yellow Sea, the Korean Peninsula, and the east Korean sea were characterized by high levels of AOD. The average FW values observed during the event of anthropogenically affected aerosols ($0.63{\pm}0.16$) were moderately higher than those of natural airborne particles ($0.52{\pm}0.13$). This observation suggests that anthropogenically affected particles contribute greatly to the atmospheric aerosols in East Asia.

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.