Enhancement of biogas production from swine slurry using the underground anaerobic digester

돈슬러리 지하혐기소화조의 바이오가스생산효율에 관한 연구

  • Suresh, Arumuganainar (Department of Agriculture Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Hong Lim (Department of Agriculture Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Jae Hwan (Rural Development Administration) ;
  • Chung, In (EnTechs)
  • Received : 2009.12.19
  • Accepted : 2009.12.30
  • Published : 2009.12.31

Abstract

To obtain basic design criteria for underground anaerobic digestion and enhance biogas production from swine slurry, a $20m^3$ underground anaerobic digester (UGAD) was constructed and operated at mesophilic ($31{\sim}37^{\circ}C$) temperature with an organic loading rate (OLR) at $23.6kgVS/m^3/day$. The average biogas and $CH_4$ production rate were observed at 8.62 and $5.78m^3/day$, respectively. The mean percentile of $CH_4$ and $CO_2$ were also observed at 67.5% and 19.6%. The relative biogas yield was explored at $733L/kg\;VS_{added}$ and $CH_4$ yield was at $495L/kg\;VS_{added}$ respectively. The removal rate of biochemical constituents and pathogens were noticed considerably at 68%, 74%, 79%, 86%, 89%, 81%, 55%, 79%, 98% and 100% on TS, VS, TSS, $BOD_5$, $TCOD_{cr}$, $SCOD_{cr}$, $NH_3-N$, available P, fecal coliforms and Salmonella, respectively. This study suggested that, the modified UGAD system is a greatly desirable for anaerobic digestion for swine slurry with regards to high methane yield and biodegradability.

겨울과 여름의 평균 기온차가 무려 $32^{\circ}C$에 이르는 우리나라에서 외부환경의 영향을 감소시킬 수 있는 유기성 폐자원의 지하혐기조 효율에 관한 연구는 매우 중요하다. 돈슬러리의 지하혐기소화조의 설계인자를 구명(究明)하기 위하여 수원소재 서울대 부속목장에 $20m^3$의 용량 소화조 pilot plant를 설계, 제작하여 유기물부하율(OLR) $23.6kgVS/m^3$/일을 인입하여 종온($31{\sim}37^{\circ}C$)으로 약 40일간 운전하였다. 평균 $CH_4$ 생성율은 $5.78{\sim}8.62m^3$/일로 분석되었으며, 바이오가스의 주(主)구성가스는 $CH_4$$CO_2$ 로서 각각 67.5%, 19.6%로 나타났다. 바이오가스 생성율은 $733L/kg\;VS_{added}$, $CH_4$ 생성량은 $495L/kg\;VS_{added}$ 분석되었다. 돈슬러리의 혐기소화공정 후 돈슬러리의 생화학적 요인, 즉, TS, VS, TSS, $BOD_5$, $TCOD_{cr}$, $SCOD_{cr}$, $NH_3-N$, available P과 병원성 미생물, 즉, fecal coliforms and Salmonella는 각각 68%, 74%, 79%, 86%, 89%, 81%, 55%, 79% 감소되었으며, 미생물은 98%, 100% 사멸되었다. 본 연구에서 변형 UGAD는 돈슬러리의 바이오가스 생성과 생화학적 요인의 농도저감효과가 높은 것으로 관찰되어 산업화를 위하여 향후 심도있는 연구가 필요하다.

Keywords

References

  1. NIAS., "Efficiency of composting and purification according to collecting method of pig manure". In: Annual Research Report 2005. National Institute of Animal Science. Livestock Environment Research. Suwon. South Korea. (2005). Available at: http://www. nias.go.kr/enelteh/report7.asp (accessed 12th February (2009).
  2. NIAS., "Research on the quantity of livestock manure excreted and their characteristics. Research on livestock facility and environment". Annual research report 1999. National Institute of Animal Science. Suwon. South Korea. (1999). Available at: http://www.nlri.go.kr/engIish/report_08.asp (accessed 12th February 2009).
  3. Pain. B., and Menzi. H., "Recycling agricultural. municipal. and industrial residues in agriculture network". In Glossary of Terms on Livestock Manure Management 2003. Swiss College of Agriculture, Zollikofen. Switzerland. (2003).
  4. Barker, J.C., and Overcash. M.R., "Swine waste characterization: A review". Transactions of the ASABE., 50(2). pp. 651-657 (2007). https://doi.org/10.13031/2013.22654
  5. Suresh. A., Choi, H.L., Lee, J.H., Zhu. K., Yao. H.Q., Choi. H.J., Moon, O. K., Park. C.K.,and Kim. J.J., "Swine slurry characterization and prediction equations for nutrients on South Korean farms", Transactions of the ASABE., 52(1). pp. 267-273 (2009). https://doi.org/10.13031/2013.25947
  6. Angelidaki. I., and Ahring, B.K., "Anaerobic thermophilic digestion of manure at different ammonia loads: Effect of temperature". Water Res., 28(3). pp. 727-731 (1994). https://doi.org/10.1016/0043-1354(94)90153-8
  7. Angelidaki, I., and Ahring, B.K., "Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure", Water Sci. Technol., 41(3). pp. 189-194 (2000).
  8. Hansen.H.H., Angelidaki. I., and Ahring, B.K., "Improving thermophilic anaerobic digestion of swine manure". Water Res., 33(8). pp. 1805-1810 (1999). https://doi.org/10.1016/S0043-1354(98)00410-2
  9. Bonmati,A., Flotats. X., Mateu. L., and Campos. E., "Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry". Water Sci. Technol., 44 (4). pp. 109-116 (2001).
  10. Hawkes,D.L., "Factors affecting net energy production from mesophilic anaerobic digestion", In: Anaerobic Digestion. Stavord. D.A. Wheatley. B.I., and Hughes. D.E., (eds.), Applied Science Publishers Ltd. London. UK (1980).
  11. Fischer,J.R., lannotti, E.L., and Durand, J., "Anaerobic animal manure, In : Agriculture and Energy. Alternative Energy in Agriculture" Goswami, I., and Yogi, D., (ed.). vol. 2. CRC Press. Inc. Florida. USA. (1986).
  12. Chae, K.J., Jang, A., Yim, S.K., and Kim, I.S., "The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure". Bioresour. Technol., 99(1). pp. 1-6 (2008). https://doi.org/10.1016/j.biortech.2006.11.063
  13. Van Lier, J.B., Tilche, A., Ahring, B.K., Macarie, H., Moletta, H., Dohanyos, M., Hulshoff Pol, L.W., Lens, P., and Werstraete, W., "New perspectives in anaerobic digestion", Water Sci. and Technol., 43 (1). pp. 1-18 (2001).
  14. Tunney, H., and Bertrand. M., "Rapid field tests for estimating dry matter and fertilizer value of animal slurries". In: Proc. 11th Intl. Congress on Agric. Eng., Dodd, V.A, Grace, P.M., (eds.), Dublin. Rotterdam. Netherlands. pp. 363-370 (1989).
  15. APHA., "Standard Methods for the Examination of Water and Wastewater". 21st edn. American Public Health Association/American Water Works Association/water Environment Federation. Washington DC. USA. (2005).
  16. Gerardi. M.H., "The microbiology of anaerobic digester". John Wilev & Sons. Hoboken. New Jersey. (2003).
  17. US EPA., "Environmental regulations and technology: Control of pathogens and vector attraction in sewage sludge". U.S. Environmental Protection Agency. EPA/625/R-92/013. Washington DC (1992).
  18. Philip. T.K., and Itodo. I.N., "Nomograph for Determining Temperatures in Anaerobic Digesters from Ambient Temperatures in the Tropics", Agricultural Engineering International: the CIGR Ejournal., 9. pp. 1-9 (2007).
  19. Hill. D.T., and Bolte. J.P., "Methane production from low solid concentration liquid swine waste using conventional anaerobic fermentation". Bioresour. Technol., 74 (3), pp. 241-247 (2000). https://doi.org/10.1016/S0960-8524(00)00008-0
  20. Hansen. H.H., Angelidaki, I., and Ahring, B.K., "Anaerobic digestion of swine manure inhibition by ammonia". Water Res., 32 (1). pp. 5-12 (1998). https://doi.org/10.1016/S0043-1354(97)00201-7
  21. Ranalli. G., Balsari. P., Colombo,M., and Sorlini. C., "Anaerobic expanded-bed laboratory digester for the treatment of swine slurries. COD removal and methane generation". J. Environ. Sci. Health., 30 (7).pp. 1397-1409 (1995). https://doi.org/10.1080/10934529509376273
  22. Cseh. T., Czako. L., Toth. J., and Tengerdy. R.P. "Two-phase anaerobic fermentation of liquid swine waste to methane". Biotechnol. Bioeng., 26. pp. 1425-1429 (1984). https://doi.org/10.1002/bit.260261205
  23. Pagilla. K.R., Kim. H., and Cheunbarn. T., "Aerobic thermophilic and anaerobic mesophilic treatment of swine waste". Water Res., 34(10), pp. 2747-2753 (2000). https://doi.org/10.1016/S0043-1354(00)00012-9
  24. Cheunbarn. T., and Pagilla, K.R., "Aerobic thermophilic and anaerobic mesophilic treatment of sludge". J. Environ. Eng., 126. pp. 790-795 (2000). https://doi.org/10.1061/(ASCE)0733-9372(2000)126:9(790)
  25. Zabranska, J., Dohanyos, M., Jenicek, P., Zaplatilkova, P., and Kutil, J., "The contribution of thermophilic anaerobic digestion to the stable operation of wastewater sludge treatment". Water Sci. Technol., 46(4-5). pp. 447-453 (2002).