• Title/Summary/Keyword: High-lift control system

Search Result 55, Processing Time 0.027 seconds

Model-based Design and Verification of High-lift Control System Using a Performance Analysis Model (성능해석 모델을 활용한 고양력 제어시스템의 모델기반 설계 및 검증)

  • Cho, Hyunjun;Kim, Taeju;Kim, Eunsoo;Kim, Sangbeom;Lee, Joonwon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.49-62
    • /
    • 2022
  • The purpose of this paper was to present a model analysis-based design process and verification results for the high-lift control system of aircraft. For this, we used Matlab/Simulink, one of the most widely-used physical modeling tools. The high-lift control system can be divided into three domains. (i.e., Electronic control domain, Hydraulic actuation domain, and Mechanical power transmission domain) Based on this division, we modeled each of the major domains and sub-components, and integrated them to complete the complicated system model. During the development process, each model block was tuned by referring to the results of pre-test and parts acceptance tests. As a result, the entire performance model and the developed system were completely verified, through unit components and system integrated performance tests. Finally, we summarize the process and results applied to the design process of high-lift control system and present future work.

A Preliminary Study to Apply Group Control System to Lifts for High-rise Construction (초고층 공사 리프트의 그룹제어 시스템 적용을 위한 기초 연구)

  • Kim, Taehoon;Lim, Hyunsu;Kim, Chang-Won;Kim, Seung Woo;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.260-261
    • /
    • 2017
  • The objective of this study is to propose the basic design plan of system by comparing and analyzing application environment of lift and elevator group control system, as preliminary study for the application of group control system to lifts for high-rise construction. The basic design plan is suggested in terms of group control algorithm, hall call system type, operation information recording device, information communication method, and operation method. The results of this study can be used as basic data for software and hardware design for application of group control technology of lifts for super tall building construction and ultimately contribute to improve the operation efficiency of lift for high-rise construction.

  • PDF

Development of Optimum Construction Lift Operation System using Sensing Information for High-rise Building (센싱정보를 활용한 초고층 건설용 리프트 최적화 운행 시스템 개발)

  • Shin, Joong-Hwan;Kwon, Soon-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.5
    • /
    • pp.153-163
    • /
    • 2013
  • As recent buildings have been more higher and larger, construction vertical lifting planning and operation is a key factor for successful project in tall building. Although many studies have been trying to set up a construction lifting planning system at early stage, there's not existing a control real-time lift operation control system with respect to during construction stage. Therefore, In this study, we use the sensor device to collect the lift operating data for improvement of lift operation efficiency and develope optimum lift operating system which can perform real-time analysis. Finally, we verify the efficiency of proposed system through comparison between realtime operating data and simulated data using proposing system. In this paper, the proposed system show more efficient moving line compared with previous system. This can contribute to development of unmanned lift system.

A Study on the Analysis of Lateral Vibration of Flexible Shafting System for Propulsion and Lift in Air Cushion Vehicle (공기부양선의 추진 및 부양축계 횡진동 해석에 관한 연구)

  • Son, Seon-Tae;Kil, Byung-Lea;Cho, Kwon-Hae;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.241-249
    • /
    • 2008
  • In this study, lateral vibration analysis has been conducted on a propulsion and lift shafting system for an air cushion vehicle using ANSYS code. The shafting system is totally flexible multi-elements system including air propeller, aluminum alloy of lift fan and thin walled shaft with flexible coupling. The analysis included the lateral natural frequencies, mode shapes and harmonic analysis of the shafting system taking into account three-dimensional models for propulsion and lifting shaft system. In case of ACV the yawing and pitching rate of craft will be quite high. During yawing and pitching of craft significant gyroscopic moment will be applied to the shafting and will generate high amplitude of lateral vibration. So, such a shafting system has very intricate lateral vibrating characteristics and natural frequencies of shafting must be avoided in the range of operating revolution. The control of lateral vibration is included in this study.

Supermaneuverability of High Performance Combat Aircraft (고성능 전투기의 초기동성)

  • 손명환;백승욱;이기영
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.40-51
    • /
    • 1999
  • This paper reviews the combat survivability and supermaneuverbility which are principal factors in current and future high performance combat aircraft design. First of all, the fighter agility evaluation factors were presented. And then, emphasis was put on technologies associated with supermaneuverbility, such as vortex lift, high angle of attack aerodynamics, thrust vectoring and control system technologies that integrate each technology. The advanced nations' supermaneuverbility R/D programs were introduced as well.

  • PDF

A Study on the High Lifting Device Equipped with the Trailing Edge Rotor for the Enhancement of Circulation Control (뒷날에 붙인 회전자로 순환유동을 강화하는 날개장치의 성능 연구)

  • Oh, Jung-Keun;Kim, Hyo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.533-542
    • /
    • 2010
  • For a long times it has been believed that the Magnus effect of the rotating cylinder could be utilized for the lifting devices applicable to marine practices. It has been reported that the rotating cylinder installed on upper deck of commercial vessel could play a energy saving role however the idea might be applicable in a very rare case in ship building practices. In this study special high lift rudder system equipped with the trailing edge rotor has been suggested in correspondence with the increasing requirement of greater rudder force. Through the numerical simulation it is cleared that the trailing edge rotor could play a role in enhancement of circulation and refinement of boundary layer of the rudder system. At the same time it is found out that the lift force of the rudder system without rotation of trailing edge rotor could be doubled when the circumferential velocity of the trailing edge rotor is equal to twice of the inflow velocity.

High Efficiency Strategy of High Input Voltage SMPS (고전압 입력용 SMPS의 고효율 전략)

  • Woo, Dong-Young;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.365-371
    • /
    • 2019
  • Recently, the demonstration and research on the power transmission using high voltage DC such as HVDC(High Voltage DC), Smart Grid, DC transmission and distribution have been actively conducted. In order to control the power converter in high-voltage DC power transmission system, SMPS(Switching Modulation Power Supply) for power converter control using high-voltage DC input is essential. However, the demand for high-pressure SMPS is still low, so the development is not enough. In the low-output SMPS using the high-voltage input, it is difficult to achieve high efficiency due to the switching transient loss especially at light load. In this paper, we propose a new switching scheme for high power SMPS control for low output power. The proposed method can provide better efficiency increase effect in the light load region compared to the existing PWM method. To verify the feasibility of the proposed method, a 40 W SMPS for HVDC MMC(Modulation Multi-level Converter) was designed and verified by simulation.

SEPARATION CONTROL USING SYNTHETIC JET ON NACA23012 AT HIGH ANGLE OF ATTACK (고받음각의 NACA23012익형에서 synthetic jet을 이용한 박리 제어 연구)

  • Kim S. H.;Kim C.;Kim K. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.125-129
    • /
    • 2005
  • Flow control has been performed using synthetic jet on NACA23012. In order to improve aerodynamic performance, synthetic jet is located near separation paint on airfoil with leading edge droop and plain flap. The flow control using synthetic jet shows that stall characteristics and control surface performance can be improved through resizing separation vortices. Stall is delayed and stall characteristics are improved when synthetic jet is applied from separation region of leading edge droop. Control surface effectiveness is increased and lift is increased when synthetic jet applied at the flap leading edge region. The results show that aerodynamic characteristics can be improved through leading edge droop with synthetic jet at near separation and plain flap with synthetic jet at the flap leading edge. The combination of synthetic jet and simple high lift device is as good as fowler flap system.

  • PDF

Performance Analysis of Stabilizer Fin Applied Coanda System (코안다 시스템이 장착된 안정기용 핀의 성능해석)

  • Seo, Dae-Won;Lee, Se-Jin;Oh, Jungkeun
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • Stabilizer fins are installed on each side of a ship to control its roll motion. The most common stabilizer fin is a rolling control system that uses the lift force on the fin surface. If the angle of attack of a stabilizer fin is zero or the speed is zero, it cannot control the roll motion. The Coanda effect is well known to generate lift force in marine field. The performance of stabilizer fin that applies the Coanda effect has been verified by model tests and numerical simulations. It was found that a stabilizer fin that applied the Coanda effect at Cj = 0.085 and a zero angle of attack exactly coincided with that of the original fin at α = 26°. In addition, the power needed to generate the Coanda effect was not high compared to the motor power of the original stabilizer fin.

A Control Algorithm Suitable for High-speed Response Battery Charging System for Elevator Car (승강기 Car용 고속응성 배터리 충전시스템에 적합한 제어알고리즘)

  • Lee, Jung-Hwan;Hwangbo, Chan;Park, Sung-Jun;Park, Seong-Mi;Ko, Jae-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1071-1081
    • /
    • 2022
  • As the demand for high-rise buildings increases, the demand for high-speed elevators is also increasing. In order to make a high-speed elevator, a method is needed to reduce the weight of the elevator's components, which is a constraint on the increase in speed. As a measure to reduce the weight, it is possible to remove the traveling cable for power and signal supply. Since the weight of the traveling cable varies depending on the position of the carriage, it is difficult to compensate the weight using the counter weight. The power supply is a structure in which a brush-rail type power input terminal is installed in the elevator hoistway to receive power in a contact-type manner while the carriage is moving. If a small-capacity ESS is installed in a passenger car, power can be supplied uninterruptedly inside the passenger car. A small-capacity ESS charging system to be applied to such an elevator system is required to perform several functions. First, the passenger Car must be able to charge as much as possible even during high-speed operation. A control algorithm with high responsiveness is required because charging starts and ends repeatedly by the partially installed input power stage. In addition, if the input-side line impedance is large due to the structure of the system and the response characteristic is increased, the stability of the system may be lowered. Accordingly, in this paper, we propose a control algorithm that has a stable steady-state output while having a fast response in a transient state. To verify the proposed control algorithm, simulation was conducted using PSIM, and the performance of the controller was verified by manufacturing a prototype buck conveter charger.