• Title/Summary/Keyword: High-intensity ultrasound

Search Result 90, Processing Time 0.031 seconds

Clinical and ultrasonographic studies for the diagnosis of ethylene glycol intoxication in dogs (개의 Ethylene glycol 중독 진단을 위한 임상 및 초음파학적 연구)

  • Byun, Hong-sub;Kim, Myung-cheol
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.3
    • /
    • pp.629-641
    • /
    • 1998
  • This study was performed to evaluate the ultrasonographic findings of ethylene glycol intoxication. Ten healthy mongrel dogs which was administered with ethylene glycol, were evaluated in terms of clinical findings, hematological findings, blood chemistry, and ultrasonographic and histopathological findings of kidney. The results obtained through these experiment could be summarized as follows : 1. Typical clinical symptoms such as vomiting, initial apprehension, depression, thirst, dehydration, tremor, anorexia, hematuria, anuria, weakness, weight loss, flaccid paralysis, tachypnea, coma, and death, were revealed after administration of ethylene glycol. 2. Special symptom of bloody diarrhea was occurred by administration of ethylene glycol. 3. After administration of ethylene glycol, PCV was decreased continuously(p<0.01), and total leukocyte count was increased gradually, revealed the highest value at day 5 and thereafter decreased. 4. Remarkable changes of ultrasonographic findings such as high echo intensity of renal parenchyma and emergence of halo in corticomedullary junction, were revealed after administration of ethylene glycol. Early(hour 8) enlargement and late(day 3) enlargement were observed in kidney(p<0.01). Especially, late enlargement was observed concurrently with the elevation of BUN and creatinine values. 5. Calcium oxalate crystals, metabolites of ethylene glycol, were observed in histopathologic findings of kidney. Also, degeneration and necrotic exfoliation of epithelial cells were recognized in addtion to swelling of renal tubules.

  • PDF

Evaluating Quadriceps Muscle Damage after Downhill Running of Different Intensities using Ultrasonography (내리막 달리기 후 국소 근손상의 영상학적 비교분석 : 운동 강도의 영향)

  • Sun, Min Ghyu;Kim, Choun Sub;Kim, Maeng Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.1028-1040
    • /
    • 2019
  • The current study was performed to investigate the magnitude of exercise-induced muscle damage (EIMD) after downhill running (DR) of different intensities and to examine the availability of muscle echo intensity as biomarkers to detect regional damage within quadriceps muscle group (QG) following DR. Healthy college-age men (n=11) were experienced twice DR sessions [$50%HR_{max}$ DR, LDR; $70%HR_{max}$ DR, HDR] separated by a 2-week wash-out period with the random order. After DR, severity of EIMD according to exercise intensity were determined by serum creatine kinase (CK) activity, muscle tenderness, and neuromuscular function indicators such as a maximal voluntary isometric contraction (MVIC) and range of motion (ROM). Transvaginal B-mode imaging had been employed to evaluate regional muscle echo intensity within QG [rectus femoris, RF; vastus lateralis, VL; vastus medialis, VM; vastus intermedius, VI]. After both DR sessions, changes in serum CK activity and muscle tenderness have tended to more increase in HDR compared to those of LDR. There was a significant interaction effect between exercise intensity during DR and the time course of serum CK activity(p<.05). However, there were no statistical differences between sessions in muscle tenderness. The time course of changes in the neuromuscular functions after DR were similar to those of regional muscle echo intensity regardless exercise intensity. Although neuromuscular function showed to decline in HDR more than those of LDR after DR, no statistical differences between sessions. In contrast, there were significant interaction effects between sessions and time course of changes in RF and VL muscle echo intensity(p<.01), but not shown in those of VI and VM. These results indicated that each muscles within the QG show different response profiles for EIMD during DR, exercise intensity influences on these responses as well. In particular, current findings suggested that muscle echo intensity derived from ultrasound imaging is capable of detecting regional muscle damage in QG following DR.

Mn-Modified PMN-PZT [Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3] Single Crystals for High Power Piezoelectric Transducers

  • Oh, Hyun-Taek;Lee, Jong-Yeb;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.150-157
    • /
    • 2017
  • Three types of piezoelectric single crystals [PMN-PT (Generation I $[Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3]$), PMN-PZT (Generation II $[Pb(Mg_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3]$), PMN-PZT-Mn (Generation III)] were grown by the solid-state single crystal growth (SSCG) method, and their dielectric and piezoelectric properties were measured and compared. Compared to (001) PMN-PT and PMN-PZT single crystals, the (001) PMN-PZT-Mn single crystals exhibited a higher transition temperature between the rhombohedral and tetragonal phases ($T_{RT}=144^{\circ}C$), as well as a higher coercive electric field ($E_C=6.3kV/cm$) and internal bias field ($E_I=1.6kV/cm$). The (011) PMN-PZT-Mn single crystals showed the highest coercive electric field ($E_C=7.0kV/cm$), and the highest stability of $E_C$ and $E_I$ during 60 cycles of polarization measurement. These results demonstrate that both Mn doping (for higher electromechanical quality factor ($Q_m$)) and a (011) crystallographic orientation (for higher coercive electric field and stability) are necessary for high power transducer applications of these piezoelectric single crystals. Specifically, the (011) PMN-PZT-Mn single crystal (Gen. III) had the highest potential for application in the fields of SONAR transducers, high intensity focused ultrasound (HIFU), ultrasonic motors, and others.

Emulsion Polymerization of Octamethylcyclotetrasiloxane under Ultrasonic Irradiation (고강도 초음파를 이용한 Octamethylcyclotetrasiloxane의 에멀전 중합)

  • Kim, Jihye;Kim, Yubin;Kim, Hyungsu
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.322-328
    • /
    • 2009
  • Emulsion polymerization of octamethylcyclotetrasiloxane (OMCTS) was conducted under ultrasonic irradiation. Two sources of ultrasound with different intensities and frequencies of 20 KHz and 40 KHz were used for horn and bath type reactor, respectively. A combined process of horn and bath was also investigated. The effectiveness of the reaction systems was investigated by measuring conversion as well as intrinsic viscosity of the products. The influence of reaction temperature and sonication time on the progress of sonochemical polymerization was examined. It was found that conversion of greater than 80% and high viscosity were achieved within a few minutes of sonication in a horn type reactor, however, conversion and viscosity showed maximum values depending upon the sonication time. In a bath type reactor where a relatively weak intensity was maintained, longer duration time of more than one hour of sonication was required to reach a high level of conversion and viscosity. Compared with the horn type system, the conversion and viscosity in the bath type reactor were increased along with the sonication time. When the polymerization was carried out in a combined system of horn and bath, the evolution of conversion and molecular weight was quite different from the other cases. For the given geometry of reaction system, acoustic analysis using a commercial software was carried out and the results were correlated with experimental observation.

Finite element analysis for acoustic and temperature characteristics of a piezoelectric HIFU transducer at 10 MHz (10 MHz용 압전 HIFU 트랜스듀서의 음향 및 온도 특성에 대한 유한요소해석)

  • Jong-Ho Kim;Il-Gok Hong;Ho-Yong Shin;Hyo-Jun Ahn;Jong-In Im
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.3
    • /
    • pp.116-123
    • /
    • 2023
  • A high intensity focuses ultrasound (HIFU) is one of the emerging technologies in the biomedical field. The piezoelectric HIFU transducer is a device that utilizes the thermal energy generated by high ultrasound energy. Recently an operating frequency of the HIFU transducer is to expand above a 7 MHz. In this study, the acoustic pressures and temperature distributions in the tissue that generated by the HIFU transducer at 10 MHz were calculated with the finite element method. In addition, the pressure focusing characteristics of the device were analyzed. The geometrical variables are the piezomaterial thickness, lens shape, water height, and film thickness. The results shown that the acoustic pressure increased and saturated gradually when the height/radius (HL/RL) ratio of the lens increased. Moreover, the focal area was gradually decreases with HL/RL ratio of the lens. In case of the optimized HIFU transducer, the maximum pressure and temperature were analyzed about 19 MPa and 65℃ respectively. And the -3 dB focused distances in the axial and lateral direction are around 2.3 mm and 0.23 mm respectively.

Effect of Mn on Dielectric and Piezoelectric Properties of 71PMN-29PT [71Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals and Polycrystalline Ceramics

  • Oh, Hyun-Taek;Joo, Hyun-Jae;Kim, Moon-Chan;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.166-173
    • /
    • 2018
  • In order to investigate the effect of Mn on the dielectric and piezoelectric properties of PMN-PT [$Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$], four different types of 71PMN-29PT samples were prepared using the solid-state single crystal growth (SSCG) method: (1) Undoped single crystals, (2) undoped polycrystalline ceramics, (3) Mn-doped single crystals, and (4) Mn-doped polycrystalline ceramics. In the case of single crystals, the addition of 0.5 mol% Mn to PMN-PT decreased the dielectric constant ($K_3{^T}$), piezoelectric charge constant ($d_{33}$), and dielectric loss (tan ${\delta}$) by about 50%, but increased the coercive electric field ($E_C$) by 50% and the electromechanical quality factor ($Q_m$) by 500%, respectively. The addition of Mn to PMN-PT induced an internal bias electric field ($E_I$) and thus specimens changed from piezoelectrically soft-type to piezoelectrically hard-type. This Mn effect was more significant in single crystals than in ceramics. These results demonstrate that Mn-doped 71PMN-29PT single crystals, because they are piezoelectrically hard and simultaneously have high piezoelectric and electromechanical properties, have great potential for application in fields of SONAR transducers, high intensity focused ultrasound (HIFU), and ultrasonic motors.

Comparative Study on Signal Strength of Mechanical Index Using Ultrasound Machines with SonoVue Contrast (Sonovue 초음파 조영제를 이용한 장비 간 Mechanical Index의 변화에 따른 신호 강도 비교연구)

  • Kim, Myung-Seok;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.21-29
    • /
    • 2019
  • The purpose of this study was to compare the MI using SonoVue along with different machines output and to infer the meaning of the signal difference under the same condition. All of the comparative instruments showed strong signal values at early stage as MI value increased. Over time, the inter-instrumental signal values showed signal attenuation under all conditions except for 10 min of the condition of MI 0.1 of RS85A. E9 and EPIQ7 showed signal degradation due to microbubble collapse over time at all MI values. In the comparison of equipment, the signal strengths of MI 0.1, 0.2, and 0.4 were high in order of EPIQ7, RS85A and E9. In the quantitative analysis, there were statistically significant from the SNR and CNR that were obtained from RS85A and E9 (P-value<0.05). In the quantitative analysis, Epiq7 was statistically significant except for CNR as the MI value was changed In the contrast-enhanced ultrasound, even though MI value was low (MI <0.05), it will be helpful for diagnosis, controlling the MI and scan time because a difference in signal intensity was shown between the three machines.

The Impact of Bladder Volume on Acute Urinary Toxicity during Radiation Therapy for Prostate Cancer (전립선암의 방사선치료시 방광 부피가 비뇨기계 부작용에 미치는 영향)

  • Lee, Ji-Hae;Suh, Hyun-Suk;Lee, Kyung-Ja;Lee, Re-Na;Kim, Myung-Soo
    • Radiation Oncology Journal
    • /
    • v.26 no.4
    • /
    • pp.237-246
    • /
    • 2008
  • Purpose: Three-dimensional conformal radiation therapy (3DCRT) and intensity-modulated radiation therapy (IMRT) were found to reduce the incidence of acute and late rectal toxicity compared with conventional radiation therapy (RT), although acute and late urinary toxicities were not reduced significantly. Acute urinary toxicity, even at a low-grade, not only has an impact on a patient's quality of life, but also can be used as a predictor for chronic urinary toxicity. With bladder filling, part of the bladder moves away from the radiation field, resulting in a small irradiated bladder volume; hence, urinary toxicity can be decreased. The purpose of this study is to evaluate the impact of bladder volume on acute urinary toxicity during RT in patients with prostate cancer. Materials and Methods: Forty two patients diagnosed with prostate cancer were treated by 3DCRT and of these, 21 patients made up a control group treated without any instruction to control the bladder volume. The remaining 21 patients in the experimental group were treated with a full bladder after drinking 450 mL of water an hour before treatment. We measured the bladder volume by CT and ultrasound at simulation to validate the accuracy of ultrasound. During the treatment period, we measured bladder volume weekly by ultrasound, for the experimental group, to evaluate the variation of the bladder volume. Results: A significant correlation between the bladder volume measured by CT and ultrasound was observed. The bladder volume in the experimental group varied with each patient despite drinking the same amount of water. Although weekly variations of the bladder volume were very high, larger initial CT volumes were associated with larger mean weekly bladder volumes. The mean bladder volume was $299{\pm}155\;mL$ in the experimental group, as opposed to $187{\pm}155\;mL$ in the control group. Patients in experimental group experienced less acute urinary toxicities than in control group, but the difference was not statistically significant. A trend of reduced toxicity was observed with the increase of CT bladder volume. In patients with bladder volumes greater than 150 mL at simulation, toxicity rates of all grades were significantly lower than in patients with bladder volume less than 150 mL. Also, patients with a mean bladder volume larger than 100 mL during treatment showed a slightly reduced Grade 1 urinary toxicity rate compared to patients with a mean bladder volume smaller than 100 mL. Conclusion: Despite the large variability in bladder volume during the treatment period, treating patients with a full bladder reduced acute urinary toxicities in patients with prostate cancer. We recommend that patients with prostate cancer undergo treatment with a full bladder.

Development of portable single-beam acoustic tweezers for biomedical applications (생체응용을 위한 휴대용 단일빔 음향집게시스템 개발)

  • Lee, Junsu;Park, Yeon-Seong;Kim, Mi-Ji;Yoon, Changhan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.435-440
    • /
    • 2020
  • Single-beam acoustic tweezers that are capable of manipulating micron-size particles in a non-contact manner have been used in many biological and biomedical applications. Current single-beam acoustic tweezer systems developed for in vitro experiments consist of a function generator and a power amplifier, thus the system is bulky and expensive. This configuration would not be suitable for in vivo and clinical applications. Thus, in this paper, we present a portable single-beam acoustic tweezer system and its performances of trapping and manipulating micron-size objects. The developed system consists of an Field Programmable Gate Array (FPGA) chip and two pulsers, and parameters such as center frequency and pulse duration were controlled by a Personal Computer (PC) via a USB (Universal Serial Bus) interface in real-time. It was shown that the system was capable of generating the transmitting pulse up to 20 MHz, and producing sufficient intensity to trap microparticles and cells. The performance of the system was evaluated by trapping and manipulating 40 ㎛ and 90 ㎛ in diameter polystyrene particles.

Ultrasonic dissection versus electrocautery for immediate prosthetic breast reconstruction

  • Lee, Dongeun;Jung, Bok Ki;Roh, Tai Suk;Kim, Young Seok
    • Archives of Plastic Surgery
    • /
    • v.47 no.1
    • /
    • pp.20-25
    • /
    • 2020
  • Background Ultrasonic dissection devices cause less thermal damage to the surrounding tissue than monopolar electrosurgical devices. We compared the effects of using an ultrasonic dissection device or an electrocautery device during prosthetic breast reconstruction on seroma development and short-term postoperative complications. Methods We retrospectively reviewed the medical records of patients who underwent implant-based reconstruction following mastectomy between March 2017 and September 2018. Mastectomy was performed by general surgeons and reconstruction by plastic surgeons. From March 2017 to January 2018, a monopolar electrosurgical device was used, and an ultrasonic dissection device was used thereafter. The other surgical methods were the same in both groups. Results The incidence of seroma was lower in the ultrasonic dissection device group than in the electrocautery group (11 [17.2%] vs. 18 [31.0%]; P=0.090). The duration of surgery, total drainage volume, duration of drainage, overall complication rate, surgical site infection rate, and flap necrosis rate were comparable between the groups. Multivariate analysis revealed that the risk of seroma development was significantly lower in the ultrasonic dissection device group than in the electrocautery group (odds ratio for electrocautery, 3.252; 95% confidence interval, 1.242-8.516; P=0.016). Conclusions The findings of this study suggest that the incidence of seroma can be reduced slightly by using an ultrasonic dissection device for prosthesis-based breast reconstruction. However, further randomized controlled studies are required to verify our results and to assess the cost-effectiveness of this technique.