• Title/Summary/Keyword: High-gain antenna

Search Result 403, Processing Time 0.031 seconds

A 42-GHz Wideband Cavity-Backed Slot Antenna with Thick Ground Plane

  • Lee, Jong-Moon;Cho, Young-Heui;Pyo, Cheol-Sig;Choi, Ik-Guen
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.262-264
    • /
    • 2004
  • We investigate the characteristics of a wideband and high-gain cavity-backed slot antenna in terms of the reflection coefficients, radiation patterns, and gain. A cavity-backed slot antenna structure includes baffles, reflectors, and thick ground planes. The measured gain and bandwidth of a 10-dB return loss in a cavity-backed $2{\times}2$ array slot antenna with $h_1=2 $mm, d=2 mm are 15.5 dBi and nearly 27%, respectively, at 42 GHz. Baffles and reflectors are used to increase antenna gain, thus reducing the coupling among the slots on the thick ground plane.

  • PDF

High-Gain and Wideband Microstrip Antenna Using Glass/Epoxy Composite and Nomex Honeycomb (유리섬유/에폭시 복합재료와 허니컴을 이용한 고성능의 마이크로스트립 안테나 설계)

  • You C.S.;Hwang W.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.1-4
    • /
    • 2004
  • In this paper we developed Composite-Smart-Structures(CSS) using sandwich structure composed of Glass/Epoxy laminates and Nomex honeycomb and microstrip antenna. Transmission/reflection theory shows that antenna performances can be improved due to multiple reflection by Glass/Epoxy facesheet, and honeycomb is used for air gap between antenna and facesheet. Stacked radiating patches are used for the wideband. Facesheet and honeycomb thicknesses are selected considering both wideband and high gain. Measured electrical performances show that CSS has wide bandwidth over $10\%$ and higher gain by 3.5dBi than initially designed antenna, and no doubt it has excellent mechanical performances by sandwich effect given by composite laminates and honeycomb core. The CSS concept can be extended to give a useful guide for manufacturers of structural body panels as well as antenna designers, promising innovative future communication technology.

  • PDF

Study on a combined televisin Receiving Antenna (전대역 TV 전파수신 안테나의 개발연구)

  • 박정기;이두수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.4
    • /
    • pp.9-16
    • /
    • 1974
  • The low channels with frequency range of 54~88MHz and the high channels with frequency range if 174~216 MHz are in use for TV broadcasting in Korea. Since the ratio of the highest frequency to the lowest frequency is 4 to 1, only a logarithmic periodic antenna cou1d cover such an wide frequency range. But, this log-periodic antenna should be big in size. Studies have been done on an antenna of small size with reasonable gain which combines through a channel filter a LPD antenna if low channel with boom length of 2m and a LPD antenna of high channel with boom length of 1.8m. The whole antenna is connected to feeder line through a talun. Experiment shows that the gain of low and high channels is 7 dB and 9 dB respectively, which are lower than theoretical values br nomore than ldB. The difference seemed to come from slight impedance mismatches between antennas and feeder lines, loss in the filter and measurement errors.

  • PDF

An Antenna with Combination of Electric-Magnetic Radiators for NotePC Platform (전기-자기계 방사체 결합형 노트 PC용 안테나)

  • Kim, Yong-Jin;Kim, Jin-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.24-28
    • /
    • 2010
  • This paper is presented on the antenna design for notepc platform. We present the antenna with combination of electric-magnetic radiator for dual-band Wireless Local Area Network (WLAN) service and a High Speed Downlink Packet Access (HSDPA) service. Due to the limited antenna space in notepc platform, the antennas for various wireless communication service should be located at a very small area. In this paper, the magnetic-type radiator works for high frequency band (1.7 - 2.1 GHz) application and the electric-type radiator works for low frequency band (820 - 960 MHz) application. This combination produces wide-band characteristics in the high frequency band. Simulation and experimental results of input impedance and gain characteristics of the proposed antenna are presented. There are good agreements between the simulated and measured S11 and gain values.

A Broadband High Gain Planar Vivaldi Antenna for Medical Internet of Things (M-IoT) Healthcare Applications

  • Permanand, Soothar;Hao, Wang;Zaheer Ahmed, Dayo;Falak, Naz;Badar, Muneer;Muhammad, Aamir
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.245-251
    • /
    • 2022
  • In this paper, a high gain, broadband planar vivaldi antenna (PVA) by utilizing a broadband stripline feed is developed for wireless communication for IoT systems. The suggested antenna is designed by attaching a tapered-slot construction to a typical vivaldi antenna, which improves the antenna's radiation properties. The PVA is constructed on a low-cost FR4 substrate. The dimensions of the patch are 1.886λ0×1.42λ0×0.026λ0, dielectric constant Ɛr=4.4, and loss tangent δ=0.02. The width of the feed line is reduced to improve the impedance bandwidth of the antenna. The computed reflection coefficient findings show that the suggested antenna has a 46.2% wider relative bandwidth calculated at a 10 dB return loss. At the resonance frequencies of 6.5 GHz, the studied results show an optimal gain of 5.82 dBi and 85% optimal radiation efficiency at the operable band. The optometric analysis of the proposed structure shows that the proposed antenna can achieve wide enough bandwidth at the desired frequency and hence make the designed antenna appropriate to work in satellite communication and medical internet of things (M-IoT) healthcare applications.

Gain Enhancement of a Circularly-Polarized Patch Antenna with a Double-Layered Superstrate for Wireless LAN (무선 LAN용 원형편파 패치안테나에 이중 적층 상부덮개를 적용한 이득 향상)

  • Lee, Sangrok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2427-2433
    • /
    • 2015
  • A high-gain circularly-polarized patch antenna with a double-layered superstrate is proposed operating at a wireless LAN frequency. A superstrate has an array of metallic periodic unit cells and is located above the patch antenna with an air-gap. The designed antenna has a high gain of over 9.59dBi, which is the gain enhancement of 6.48dB compared to the patch antenna without superstrate. And it has a low axial ratio of under 3dB, so that it maintains the circular polarization of the patch antenna. The optimum air-gap height at the superstrate of $4{\times}4$ arrays is 25mm, which is equivalent to about $0.2{\lambda}$ at the frequency of 2.45GHz. We confirmed that the double-layered stacking of a superstrate increases the effective aperture size and hence it leads to enhance a gain of the patch antenna.

Design of High Gain array antenna for 70GHz band Short Range Radar Sensor (70GHz대역 근거리레이다 센서용 고이득 배열안테나의 설계)

  • Kim, Ju-suk;Kim, Gue-chol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.402-403
    • /
    • 2018
  • 70GHz-band high gain array antenna is developed for automotive short range radar sensor. In Short-rangeradar, the gain must be high in order to increase the resolution, and the angle width must be set to secure the field of view(Fov). The proposed antenna operates at 76~81GHz and satisfies angle width $60^{\circ}$, antenna gain 15dB and the input reflection coefficient of less than -10dB within the operating frequency. Wave guide WR-10 was used to measure the antenna and results similar to the simulation results were obtained.

  • PDF

Design of 60-GHz Back-to-back Differential Patch Antenna on Silicon Substrate

  • Deokgi Kim;Juhyeong Seo;Seungmin Ryu;Sangyoon Lee;JaeHyun Noh;Byeongju Kang;Donghyuk Jung;Sarah Eunkyung Kim;Dongha Shim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.142-147
    • /
    • 2023
  • This paper presents a novel design of a differential patch antenna for 60-GHz millimeter-wave applications. The design process of the back-to-back (BTB) patch antenna is based on the conventional single-patch antenna. The initial design of the BTB patch antenna (Type-I) has a patch size of 0.66 × 0.98 mm2 and a substrate size of 0.99 × 1.48 mm2. It has a gain of 1.83 dBi and an efficiency of 94.4% with an omni-directional radiation pattern. A 0.4 mm-thick high-resistivity silicon (HRS) is employed for the substrate of the BTB patch antenna. The proposed antenna is further analyzed to investigate the effect of substrate size and resistivity. As the substrate resistivity decreases, the gain and efficiency degrade due to the substrate loss. As the substrate (HRS) size decreases approaching the patch size, the resonant frequency increases with a higher gain and efficiency. The BTB patch antenna has optimal performances when the substrate size matches the patch size on the HRS substrate (Type-II). The antenna is redesigned to have a patch size of 0.81 × 1.18 mm2 on the HRS substrate in the same size. It has an efficiency of 94.9% and a gain of 1.97 dBi at the resonant frequency of 60 GHz with an omni-directional radiation pattern. Compared to the initial design of the BTB patch antenna (Type-I), the optimal BTB patch antenna (Type-II) has a slightly higher efficiency and gain with a considerable reduction in antenna area by 34.8%.

  • PDF

Design of a High Gain Microstrip Antenna with Rectangular Cavity Backed (구형 캐비티 부착형 고이득 마이크로스트립 안테나 설계)

  • 임정섭;이문수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.822-828
    • /
    • 2001
  • In this paper, a high gain microstrip antenna with rectangular cavity backed is designed. A single microstrip patch is basically a low gain radiator As a ga in enhancement method, superstrate loading techniques are applied to the $2\times2$ microstrip array antenna with cavity backed. In antenna design, although the broadside gain increases as the cavity is enlarged, a cavity size of $3\times3$ wavelength is sufficient. The distance between the radiating elements is chosen as 1.5 free-space wavelength. The antenna radiation characteristics are calculated by IE3D software and compared with the experimental results. Experimental results show that the maximum gain is 18.6dBi at the frequency of 9.16GHz, which is good agreement with the calculations.

  • PDF

Design of Wide-Band, High Gain Microstrip Antenna Using Parallel Dual Slot and Taper Type Feedline (평행한 이중 슬롯과 Taper형 급전선로를 이용한 광대역, 고이득 마이크로스트립 안테나의 설계)

  • Lee, Sang-Woo;Lee, Jae-Sung;Kim, Chol-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.257-264
    • /
    • 2007
  • In this paper, we have designed and fabricated a wide-band and high gain antenna which can integrate a standard of IEEE 802.1la$(5.15\sim5.25\;GHz,\;5.25\sim5.35\;GHz,\;5.725\sim5.825\;GHz)$. We inserted a parallel dual slot into a rectangular patch to have wide-band, and we offset an element of capacitance from the slot by using coaxial probe feeding method. We also designed a converter of $\lambda_g/4$ impedance with taper type line so that wide-band impedance can be matched easily. We finally designed structure with $2\times2$ array in order to improve the antenna gain, and the final fabricated antenna could have a good return loss(Return loss$\leq$-10 dB) and a high gain(over 13 dBi) at the range of $5.01\sim5.95\;GHz(B/W\doteqdot940\;MHz)$.