DOI QR코드

DOI QR Code

Gain Enhancement of a Circularly-Polarized Patch Antenna with a Double-Layered Superstrate for Wireless LAN

무선 LAN용 원형편파 패치안테나에 이중 적층 상부덮개를 적용한 이득 향상

  • Lee, Sangrok (Shinhan University Department of IT Convergence Engineering)
  • Received : 2015.09.17
  • Accepted : 2015.11.30
  • Published : 2015.12.30

Abstract

A high-gain circularly-polarized patch antenna with a double-layered superstrate is proposed operating at a wireless LAN frequency. A superstrate has an array of metallic periodic unit cells and is located above the patch antenna with an air-gap. The designed antenna has a high gain of over 9.59dBi, which is the gain enhancement of 6.48dB compared to the patch antenna without superstrate. And it has a low axial ratio of under 3dB, so that it maintains the circular polarization of the patch antenna. The optimum air-gap height at the superstrate of $4{\times}4$ arrays is 25mm, which is equivalent to about $0.2{\lambda}$ at the frequency of 2.45GHz. We confirmed that the double-layered stacking of a superstrate increases the effective aperture size and hence it leads to enhance a gain of the patch antenna.

무선 LAN 대역에서 동작하는 이중 적층 상부덮개를 적용한 고이득 원형편파 패치 안테나를 제안한다. 상부덮개는 단위 셀을 주기적으로 배열하는 구조를 갖고, 패치안테나 위에 일정한 높이의 공기층을 두고 배치된다. 제안된 안테나는 최대 9.59dBi의 안테나 이득을 얻을 수 있는데 이는 패치안테나만 있는 경우에 비해 6.48dB 향상된 결과이다. 또한, 제안된 안테나는 높은 안테나 이득을 유지하면서 3dB 이하의 낮은 축비를 갖는데 이는 패치안테나의 원형 편파 특성이 잘 유지됨을 의미한다. $4{\times}4$ 배열구조를 갖는 상부덮개와 패치안테나 간의 공기층 높이는 25mm에서 최적이고, 이는 2.45GHz 주파수에서 대략 $0.2{\lambda}$에 해당된다. 결과적으로 상부덮개를 이중으로 적층함으로써 유효 개구면 크기가 증가되고, 이에 따라 패치안테나의 이득이 향상됨을 확인하였다.

Keywords

References

  1. D. R. Jackson and N. G. Alexopoulos, "Gain enhancement methods for printed-circuit antennas," IEEE Trans. Antennas Propag., vol. AP-33, no. 9, pp. 976-987, Jan. 1985.
  2. C. Kim, K.-H. Lee, S. Lee, K.-T. Kim, and Y.-K. Yoon, "A surface micromachined high directivity GPS patch antenna with a four-leaf clover shape metamaterial slab," 62nd Electronic Components & Technol. Conf. 2012, pp. 942-947, Jun. 2012.
  3. S. Lee, "Analysis of the effects by multi-stacking of superstrates on circularpolarized patch antenna," J. IEIE, vol. 51, no. 3, pp. 202-209, Mar. 2014.
  4. T. N. Chang, M. C. Wu, and J.-M. Lin, "Gain enhancement for circularly polarized microstrip patch antenna," Progress in Electromagnetics Research, vol. 17, pp. 275-292, 2009. https://doi.org/10.2528/PIERB09081008
  5. S. Chaimool, K. L. Chhung, and P. Akkaraekthalin, "Bandwidth and gain enhancement of microstrip patch antennas using reflective metasurface," IEICE Trans. Commun., vol. E93-B, no. 10, Oct. 2010.
  6. D. Zarifi, H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral meta-material covers," Progress in Electromagnetics Research, vol. 123, pp. 337-354, 2012. https://doi.org/10.2528/PIER11110506
  7. K. Chen, K. Lin, and H. Su, "Microstrip antenna gain enhancement by metamaterial radome with more subwavelength holes," Microwave Conf. & APMC 2009, pp. 790-792, Dec. 2009.
  8. A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vadaxoglou, "Artificial magnetic conductor surface and their application to low-profile high-gain planar antenna," IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 209-215, Jan. 2005. https://doi.org/10.1109/TAP.2004.840528
  9. A. Alu, N. Engheta, A. Erentok, and R. W. Ziolkowski, "Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications," IEEE Antennas Propag. Mag., vol. 49, no. 1, pp. 23-26, Feb. 2007. https://doi.org/10.1109/MAP.2007.370979
  10. S. Lee, M.-H. Lee, S.-Y. Rhee, and N. Kim, "Embodiment of high impedance surface of meta-material characteristic using symmetrical AMC structure and its SAR," J. KICS, vol. 38B, no. 9, pp. 744-750, 2013. https://doi.org/10.7840/kics.2013.38B.9.744
  11. S. H. Yoon, "Study on performance enhancement of microstrip antenna using EBG structure," J. KICS, vol. 39B, no. 1, pp. 44-52, 2014. https://doi.org/10.7840/kics.2014.39B.1.44
  12. S. H. Yoon and J. K. Kim, "Performance analysis of the uni-directional radiation equiangular antenna over EBG surface," J. KICS, vol. 40, no. 8, pp. 1622-1630, 2015. https://doi.org/10.7840/kics.2015.40.8.1622
  13. Rogers Corp, RT/duroid 6006/6010M High Frequency Laminates, 2011, from http://www. rogerscorp.com
  14. C. A. Balanis, Modern Antenna Handbook, New York: Wiley, 2008.
  15. M. Ramahi and Y. T. Lo, "Superstrate effect on the resonant frequency of microstrip antennas," Microw. Opt. Technol. Lett., vol. 5, no. 6, pp. 254-257, Jun. 1992. https://doi.org/10.1002/mop.4650050603

Cited by

  1. Design of a Circular Polarization Microstrip Patch Antenna for ISM Band Using a T-junction Power Divider vol.16, pp.11, 2018, https://doi.org/10.14801/jkiit.2018.16.11.77