• Title/Summary/Keyword: High-frequency switching converter

Search Result 552, Processing Time 0.029 seconds

An Improvement Parallel to the Efficiency of Boost Converter for Power Factor Correction (PFC용 부스트 컨버터의 병렬화에 의한 효율 개선)

  • 전내석;장수형;전일영;박영산;안병원;이성근;김윤식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.120-124
    • /
    • 2001
  • A new technique for improving the efficiency of single-phase high-frequency boost converter is proposed. This converter includes an additional low-frequency boost converter which is connected to the main high-frequency switching device in parallel. The additional converter is controlled at lower frequency. Most of the current flows in the low-frequency switch and so, high-frequency switching loss is greatly reduced accordingly Both switching device are controlled by a simple method; each controller consists of a one-shot multivibrator, a comparator and an AND gate. The converter works cooperatively in high efficiency and acts as if it were a conventional high-frequency boost converter with one switching device. The proposed method is verified by simulation. This paper describes the converter configuration and design, and discusses the steady-state performance concerning the switching loss reduction and efficiency improvement.

  • PDF

Single Phase Utility Frequency AC-High Frequency AC Matrix Converter Using One-Chip Reverse Blocking IGBTs based Bidirectional Switches

  • Hisayuki, Sugimura;Kwon, Soon-Kurl;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.125-128
    • /
    • 2006
  • This paper presents a novel type soft switching PWM power frequency AC-AC converter using bidirectional active switches or single phase utility frequency AC-high frequency AC matrix converter. This converter can directly convert utility frequency AC (UFAC, 50Hz/60Hz) power to high frequency AC (HFAC) power ranging more than 20kHz up to 100kHz. A novel soft switching PWM prototype of high frequency multi-resonant PWM controlled UFAC-HFAC matrix converter using antiparallel one-chip reverse blocking IGBTs manufactured by IXYS corp. is based on the soft switching resonance with asymmetrical duty cycle PWM strategy. This single phase UFAC-HFAC matrix converter has some remarkable features as electrolytic capacitor DC busline linkless topology, unity power factor correction and sine-wave line current shaping, simple configuration with minimum circuit components, high efficiency and downsizing. This series load resonant UFAC-HFAC matrix converter, incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances in home uses and business-uses. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are illustrated and discussed on the basis of simulation and experimental results.

  • PDF

Soft-Switched Synchronous Buck Converter for Battery Chargers

  • Dong, Zhiyong;Joung, Gyubum
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.138-146
    • /
    • 2019
  • In this paper, we proposed a soft-switched synchronous buck converter, which can perform charging the battery. The proposed converter has low switching loss even at high frequency operation due to its soft switching characteristics. The converter operates in synchronous mode to minimize conduction loss, resulting in small conduction loss, also. In this reason, the efficiency of the converter can be greatly improved even in high frequency. The size and weight of the converter can be reduced by high frequency operation of the converter. In this paper, we designed a battery charger with a switching frequency of 100 kHz. The designed converter also simulated to prove the converter's characteristics of synchronous operation as well as soft switching operation. The simulation shows that the proposed converter always meets the soft switching conditions of turning on and off switching in the zero voltage and zero current states. Therefore, simulation results have confirmed that the proposed battery charger had soft switching characteristics. The simulation results for transient response to charge current for the designed converter show that the converter responds to charge current commands quickly within 0.05 ms.

A Novel type of High-Frequency Transformer Linked Soft-Switching PWM DC-DC Power Converter for Large Current Applications

  • Morimoto Keiki;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.216-225
    • /
    • 2006
  • This paper presents a new circuit topology of DC busline switch and snubbing capacitor-assisted full-bridge soft-switching PWM inverter type DC-DC power converter with a high frequency link for low voltage large current applications as DC feeding systems, telecommunication power plants, automotive DC bus converters, plasma generator, electro plating plants, fuel cell interfaced power conditioner and arc welding power supplies. The proposed power converter circuit is based upon a voltage source-fed H type full-bridge high frequency PWM inverter with a high frequency transformer link. The conventional type high frequency inverter circuit is modified by adding a single power semiconductor switching device in series with DC rail and snubbing lossless capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge inverter arms and DC busline can achieve ZVS/ZVT turn-off and ZCS turn-on commutation operation. Therefore, the total switching losses at turn-off and turn-on switching transitions of these power semiconductor devices can be reduced even in the high switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules is selected to be 60 kHz. It is proved experimentally by the power loss analysis that the more the switching frequency increases, the more the proposed DC-DC converter can achieve high performance, lighter in weight, lower power losses and miniaturization in size as compared to the conventional hard switching one. The principle of operation, operation modes, practical and inherent effectiveness of this novel DC-DC power converter topology is proved for a low voltage and large current DC-DC power supplies of arc welder applications in industry.

Soft switched Synchronous Boost Converter for Battery Dischargers

  • Dong, Zhiyong;Joung, Gyubum
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.105-113
    • /
    • 2020
  • In this paper, we proposed a soft switched synchronous boost converter, which can perform discharging the battery, is proposed. The proposed converter has low switching loss even at high frequency operation due to its soft switching characteristics. The converter operates in synchronous mode to minimize conduction loss because of changing the rectified diode to MOSFET with a low on resistance. In this reason, the efficiency of the converter can be greatly improved in high frequency. In this paper, the battery discharger with a switching frequency of 100 kHz, has been designed. The designed converter also simulated to prove the converter's characteristics of synchronous operation as well as soft switching operation. The simulation shows that the proposed converter always meets the soft switching conditions of turning on and off switching in the zero voltage and zero current states. Therefore, simulation results have confirmed that the proposed battery discharge had soft switching characteristics. The simulation results have confirmed that the proposed battery discharger had soft switching and synchronous operation characteristics.

Optimal Design of a DC-DC Converter for Photovoltaic Generation

  • Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.3
    • /
    • pp.40-49
    • /
    • 2011
  • This paper presents novel circuit topology of half-bridge soft-switching PWM inverter type DC-DC high power converter for DC bus feeding power plants. The proposed DC-DC power converter is composed of a typical voltage source-fed, half-bridge high frequency PWM inverter with a high frequency planar transformer link PWM control scheme and parallel capacitive lossless snubbers. The operating principle of the new DC-DC converter treated here is described by using switching mode-equivalent circuits, together with its unique features. All the active power switches in the half-bridge arms and input DC bus lines can achieve ZCS turn-on and ZVS turn-off commutation transitions. The total turn-off switching losses of the power switches can be significantly reduced. As a result, high switching frequency IGBTs can actually be selected in the frequency range of 40[kHz] under the principle of soft-switching. The performance evaluations of the experimental setup are illustrated practically.

A Study on the Efficiency Improvement of Boost Converter for Power Factor Correction (PFC용 부스트 컨버터의 효율 개선에 관한 연구)

  • Jeon, Nae-Suck;Jeon, Su-Kyun;Lee, Sung-Geun;Kil, Guyng-Suk;Kim, Yoon-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1094-1096
    • /
    • 2002
  • A new technique for improving the efficiency of single-phase high-frequency boost converter is proposed. This converter includes an additional low-frequency boost converter which is connected to the main high-frequency switching device in parallel. The additional converter is controlled at lower frequency. Most of the current flows in the low-frequency switch and so, high-frequency switching loss is greatly reduced accordingly. Both switching device are controlled by a simple method; each controller consists of a comparator, a frequency generator and an error amplifier. The converter works cooperatively in high efficiency and acts as if it were a conventional high-frequency boost converter with one switching device, The proposed method is verified by simulation and experiment. This paper describes the converter configuration and design, and discusses the steady-state performance concerning the switching loss reduction and efficiency improvement.

  • PDF

Design of a Digital PWM Controller for a Soft Switching SEPIC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.152-160
    • /
    • 2004
  • This paper presents analysis, modeling, and design of a low-harmonic, isolated, active-clamped SEPIC for future avionics applications. Simpler converter dynamics, high switching frequency, zero voltage-Transition-PWM switching, and a single-layer transformer construction result. This paper describes complete design of a digital controller for a high-frequency switching power supply. Guidelines for the minimum required resolution of the analog-to-digital converter, the pulse-width modulator, and the fixed-point computational unit is derived. A design example based on a SEPIC converter operating at the high switching frequency is presented. The controller design is based on direct digital design approach and standard root-locus techniques.

DC Rail Side Series Switch and Parallel Capacitor Snubber-Assisted Edge Resonant Soft-Switching PWM DC-DC Converter with High-Frequency Transformer Link

  • Morimoto, Keiki;Fathy, Khairy;Ogiwara, Hiroyuki;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 2007
  • This paper presents a novel circuit topology of a DC bus line series switch and parallel snubbing capacitor-assisted soft-switching PWM full-bridge inverter type DC-DC power converter with a high frequency planar transformer link, which is newly developed for high performance arc welding machines in industry. The proposed DC-DC power converter circuit is based upon a voltage source-fed H type full-bridge soft-switching PWM inverter with a high frequency transformer. This DC-DC power converter has a single power semiconductor switching device in series with an input DC low side rail and loss less snubbing capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge arms and DC bus line can achieve ZCS turn-on and ZVS turn-off transition commutation. Consequently, the total switching power losses occurred at turn-off switching transition of these power semiconductor devices; IGBTs can be reduced even in higher switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules can be realized at 60 kHz. It is proved experimentally by power loss analysis that the more the switching frequency increases, the more the proposed DC-DC power converter can achieve a higher control response performance and size miniaturization. The practical and inherent effectiveness of the new DC-DC converter topology proposed here is actually confirmed for low voltage and large current DC-DC power supplies (32V, 300A) for TIG arc welding applications in industry.

Design and Implementation of 500 kHz High Frequency LLC Resonant Converter for High Power Density (높은 전력밀도를 갖는 500 kHz 고주파 LLC 컨버터의 설계와 구현)

  • Park, Hwa-Pyeong;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • In order to decrease the size of a switch mode power supply, high switching frequency can be an efficient way to reduce the size of passive components in the converter. In this paper, a 500-kHz high-frequency LLC resonant converter is proposed with an accurate design method of magnetizing inductance, as well as the relationship between the switching frequency and the size of the passive components. Simulation and experimental results are presented to verify the proposed methods and equations, including the temperature data of each passive and active device of the converter. Using those results, dominant power losses in the prototype converter under 500-kHz high-frequency operation are investigated, compared with the results from a 100-kHz converter. In addition, operating waveforms and power conversion efficiency will be shown to obtain design considerations for the high switching frequency LLC resonant converter.