• Title/Summary/Keyword: High-frequency converters

Search Result 226, Processing Time 0.029 seconds

Active Resonant Snubber for Ideal Switched PWM Converter (능동형 공진 스너버)

  • Moon, Gun-Woo;Lee, Jung-Hoon;Jung, Young-Seok;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.412-414
    • /
    • 1994
  • A new active resonant snubber (ARS) circuit providing the ideal switching conditions for PWM converter is presented. By using the proposed ARS circuit to PWM converters, the power switches can be operated to give zero-current and zero-voltage at both the instant of switch off and switch on, without increasing voltage/current stresses of the switches. Furthermore, the PWM converters employed ARS circuit has the advantage that it can operate at constant frequency, giving better definded EMI and filter ripple, and it is also suited for high-power application regardless of the semiconductor devices (such as MOSFETs or IGBTs) used as a power switches.

  • PDF

A New Scheme for Nearest Level Control with Average Switching Frequency Reduction for Modular Multilevel Converters

  • Park, Yong-Hee;Kim, Do-Hyun;Kim, Jae-Hyuk;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.522-531
    • /
    • 2016
  • This paper proposes a new NLC (Nearest Level Control) scheme for MMCs (Modular Multilevel Converters), which offers voltage ripple reductions in the DC capacitor of the SM (Sub-Module), the output voltage harmonics, and the switching losses. The feasibility of the proposed NLC was verified through computer simulations. Based on these simulation results, a hardware prototype of a 10kVA, DC-1000V MMC was manufactured in the lab. Experiments were conducted to verify the feasibility of the proposed NLC in an actual hardware environment. The experimental results were consistent with the results obtained from the computer simulations.

A low-power multiplying D/A converter design for 10-bit CMOS algorithmic A/D converters (10비트 CMOS algorithmic A/D 변환기를 위한 저전력 MDAC 회로설계)

  • 이제엽;이승훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.12
    • /
    • pp.20-27
    • /
    • 1997
  • In this paper, a multiplying digital-to-analog converter (MDAC) circuit for low-power high-resolution CMOS algorithmic A/D converters (ADC's) is proposed. The proposed MDAC is designed to operte properly at a supply at a supply voltge between 3 V and 5 V and employs an analog0domain power reduction technique based on a bias switching circuit so that the total power consumption can be optimized. As metal-to-metal capacitors are implemented as frequency compensation capacitors, opamps' performance can be varied by imperfect process control. The MDAC minimizes the effects by the circuit performance variations with on-chip tuning circuits. The proposed low-power MDAC is implementd as a sub-block of a 10-bit 200kHz algorithmic ADC using a 0.6 um single-poly double-metal n-well CMOS technology. With the power-reduction technique enabled, the power consumption of the experimental ADC is reduced from 11mW to 7mW at a 3.3V supply voltage and the power reduction ratio of 36% is achieved.

  • PDF

Development of the precision AC/DC power measuring system on the basis of thermal converters (열전형변환기를 사용한 정밀 교류직류전력측정장치 개발)

  • 박영태;장석명
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.9-13
    • /
    • 1996
  • The high precision of electrical power and energy measurements with wide range of frequency and power factor can be achieved by using the thermo-electrical power comparators. The paper describes the development of a precision power measuring system by using a ac/dc power comparator for measurement of power. Based on a thermal principle, the instrument performs ac-dc transfer for ac power measurements in the range of currents from 0 to 5 $A_{ms}$ , voltages from 0 to 240 $V_{ms}$ , power factors from 0 to 1 and frequencies from 0 to 1000 Hz. Two thermal converters with two heater are used in the functional element of the comparators. The ac-dc transfer accuracy is better than 20 ppm at unity power factor and better than 50 ppm at 0.5 power factor. (author). 8 refs., 5 figs., 3 tabs.

  • PDF

A Novel type of High-Frequency Transformer Linked Soft-Switching PWM DC-DC Power Converter for Large Current Applications

  • Morimoto Keiki;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.216-225
    • /
    • 2006
  • This paper presents a new circuit topology of DC busline switch and snubbing capacitor-assisted full-bridge soft-switching PWM inverter type DC-DC power converter with a high frequency link for low voltage large current applications as DC feeding systems, telecommunication power plants, automotive DC bus converters, plasma generator, electro plating plants, fuel cell interfaced power conditioner and arc welding power supplies. The proposed power converter circuit is based upon a voltage source-fed H type full-bridge high frequency PWM inverter with a high frequency transformer link. The conventional type high frequency inverter circuit is modified by adding a single power semiconductor switching device in series with DC rail and snubbing lossless capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge inverter arms and DC busline can achieve ZVS/ZVT turn-off and ZCS turn-on commutation operation. Therefore, the total switching losses at turn-off and turn-on switching transitions of these power semiconductor devices can be reduced even in the high switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules is selected to be 60 kHz. It is proved experimentally by the power loss analysis that the more the switching frequency increases, the more the proposed DC-DC converter can achieve high performance, lighter in weight, lower power losses and miniaturization in size as compared to the conventional hard switching one. The principle of operation, operation modes, practical and inherent effectiveness of this novel DC-DC power converter topology is proved for a low voltage and large current DC-DC power supplies of arc welder applications in industry.

Circulating Current Harmonics Suppression for Modular Multilevel Converters Based on Repetitive Control

  • Li, Binbin;Xu, Dandan;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1100-1108
    • /
    • 2014
  • Modular multilevel converters (MMCs) have emerged as the most promising topology for high and medium voltage applications for the coming years. However, one particular negative characteristic of MMCs is the existence of circulating current, which contains a dc component and a series of low-frequency even-order ac harmonics. If not suppressed, these ac harmonics will distort the arm currents, increase the power loses, and cause higher current stresses on the semiconductor devices. Repetitive control (RC) is well known due to its distinctive capabilities in tracking periodic signals and eliminating periodic errors. In this paper, a novel circulating current control scheme base on RC is proposed to effectively track the dc component and to restrain the low-frequency ac harmonics. The integrating function is inherently embedded in the RC controller. Therefore, the proposed circulating current control only parallels the RC controller with a proportional controller. Thus, conflicts between the RC controller and the traditional proportional integral (PI) controller can be avoided. The design methodologies of the RC controller and a stability analysis are also introduced. The validity of the proposed circulating current control approach has been verified by simulation and experimental results based on a three-phase MMC downscaled prototype.

A Study on Space Vector Modulation Method to Improve Input Power Factor of Matrix Converter (매트릭스 컨버터의 입력 역률 향상을 위한 공간벡터변조기법에 관한 연구)

  • Nguyen, Hoang M.;Lee, Hong-Hee;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.476-486
    • /
    • 2008
  • It is very important to design the input filter optimally in matrix converters. But, the input power factor is deteriorated in spite of the optimal filter design due to the existence of inductor and capacitor included in the filter, and it is hard to keep high power factor in the whole operating range which is one of the major advantages of the matrix converters because the power factor is changed according to the output frequency and the load current. In this paper, we introduce the new space vector modulation method which can preserve the input power factor almost unity even though the output load or the output frequency is varied. It is also presented how to implement the proposed method effectively.

A Novel Soft-Switching PWM DC/DC Converter with DC Rail Series Switch-Parallel Capacitor Edge Resonant Snubber Assisted by High-Frequency Transformer Parasitic Components

  • Fathy, Khairy;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents two new circuit topologies of DC bus lineside active edge resonant snubber assisted soft-switching PWM full-bridge DC-DC converter acceptable for either utility AC 200V-rms or AC 400V-rms input voltage source. One topology of proposed DC-DC converters is composed of a typical voltage source-fed full-bridge high frequency PWM inverter using DC busline side series power semiconductor switching devices with the aid of a parallel capacitive lossless snubber. All the active power switches in the full-bridge arms and DC busline can achieve ZCS turn-on and ZVS turn-off commutations and the total turn-off switching power losses of all active switches can be reduced for high-frequency switching action. It is proved that the more the switching frequency of full-bridge soft switching inverter increases, the more soft-switching PWM DC-DC converter with a hish frequency transformer link has remarkable advantages for its efficiency and power density as compared with the conventional hard-switching PWM inverter type DC-DC converter

  • PDF

Soft-Switching Boost Chopper Type DC-DC Power Converter with a Single Auxiliary Passive Resonant Snubber

  • Nakamura Mantaro;Myoui Takeshi;Abudullh Al Mamun;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.256-260
    • /
    • 2001
  • This paper presents boost and buck and buck-boost DC-DC converter circuit topologies of high-frequency soft switching transition PWM chopper type DC-DC high power converters with a single auxiliary passive resonant snubber. In the proposed boost power converter circuits operating under a principle of ZCS turn-on and ZVS turn-off commutation schemes, the capacitor and inductor in the auxiliary passive resonant circuit works as the loss less resonant snubber. In addition to this, the switching voltage and current peak stresses as well as EMI and RFI noises can be basically reduced by this single passive resonant snubber. Moreover, it is proved that converter circuit topologies with a passive resonant snubber are capable of solving some problems of the conventional hard switching PWM processing based on high-ferquency pulse modulation operation principle. The simulation results of this converter are discussed as compared with the experimental ones. The effectiveness of this power converter with a single passive resonant snubber is verified by the 5kW experimental breadboad set up.

  • PDF

Single-Phase Active Power Filter for Higher-order Harmonic Current Compensation (고차 고조파 전류의 보상을 위한 단상 능동전력필터)

  • Sung, Ki-Suk;Woo, Myung-Ho;Song, Joong-Ho;Choy, Ick;Lim, Myo-Taeg
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.7
    • /
    • pp.500-508
    • /
    • 2000
  • Basic design for single-phase active power filter, which aims at railway application provided with PWM-controlled converters, is comprehensively studied and its performance is presented in this paper. Active power filters are used to compensate railway signaling and public telecommunication interference due to the high-order harmonic currents generated in railway traction locomotives. A type of hybrid digital filter which is composed of low pass filter and high pass filter is proposed so that the desired harmonic reference current with accurate magnitude and phase shift can be extracted from catenary line current. A design criteria to determine input inductor L and output capacitor C is also described, considering voltage, current, PWM pattern, and switching frequency of the main converters. Finally, computer simulation and DSP-based experiments resulted from laboratory test are presented.

  • PDF