• Title/Summary/Keyword: High-flexibility system

Search Result 475, Processing Time 0.029 seconds

Improvement of Shear Performance for High Ductile Fiber-Reinforced Mortar Slab-Column Connection in Flat Plate Structural System (고인성 복합섬유 모르타르를 이용한 플랫 플레이트 구조 슬래브-기둥 접합부의 전단성능 개선)

  • Ha Gee Joo;Kim Yun Yong;Shin Jong Hak;Yang Seung Hyeok;Hong Kun Ho;Kim Joung Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.145-148
    • /
    • 2005
  • Recently the construction of high-rise reinforced concrete building is progressively increased as the social demands. It is significantly important factors such as economy, the safety of structure, and the flexibility of internal space. Therefore new structural system is also required to be attained the reduction of story height, the flexibility and efficient use of space. The most suitable structural system is with the economy and flexibility, flat plate slab system in high-rise reinforced concrete building. In this research, it was focused in the improvement of shear performance in the flat plate system using high ductile fiber reinforced mortar. It was evaluated the shear performance in the critical region of slab-column connection. The flat plate system, designed by the high performance and safety, was developed as a new technique in the application of high-rise R/C building.

  • PDF

Flexibility Measurement Model for Cellular Manufacturing Systems (셀 형태의 생산 시스템의 유연성 측정 모형)

  • Jung, Eun-Kyung;Jeon, Tae-Bo;Kim, Young-Hui
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.3
    • /
    • pp.91-102
    • /
    • 1993
  • This paper suggests an approach to quantitative evaluation of a manufacturing flexibility in automated manufacturing systems. The flexibility of a cell is newly defined and evaluated in use of the environmental change factors which may influence flexibility for satisfying a manufacturing performance objective. The number of machines, the number of operations, machine breakdowns and processing times are considered for this cell flexibility measure. The cell flexibility measures the extent that the cell utilizes the processes to acquire high throughput. Simulation program written in SLAM System was used to help measure cell flexibility. The proposed cell flexibility measure provides a prediction of the influence of the factors on throughput performance, and applies in case of comparison of existing system and a new system, changes in operation conditions of a cell, and comparison of rival machines. Therefore it can be used as decision making criteria for system justification.

  • PDF

Analysis of Seismic Performance of Slim Flat Plate System in High-rise Hybrid Structural System (슬림형 바닥시스템을 이용한 고층 복합구조의 내진성능에 관한 해석적 연구)

  • Ha Gee Joo;Park Hyo Sun;Park Joung Hyen;Choi Kyung Ryeol;Kim Dae Joung;Jung Jea Kwang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.77-80
    • /
    • 2005
  • Recently the construction of high-rise hybrid type building is progressively increased as the social demands. It is significantly important factors such as economy, the safety of structure, and the flexibility of internal space. Therefore new hybrid structural system, using slim flat plate system, is also required to be attained the reduction of story height, the flexibility and efficient use of space. The most suitable structural system is ,with the economy and flexibility, flat plate system in high-rise hybrid type building. But it was focused in the seismic performance for high performance flat plate system in high-rise hybrid type building. Therefore, in the study, to develop the new flat-plate system with high ductile, durable, good performance for the applications. It was evaluated the seismic performance in the critical region of slab-column connection. And then high performance flat plate system, designed by the economy and safety, was developed as a new technique in the application of high-rise hybrid type building.

  • PDF

Balancing Speed, Precision, and Flexibility

  • Tanaka, Yoke
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.937-940
    • /
    • 1993
  • A new hardware architecture achieves high speed, high precision fuzzy inference capabilities while maintaining Flexibility on par with software approaches. This flexibility allows unmodified, uncompromised porting of fuzzy system designs into hardware. The architecture is also scalable and offers data resolutions from 8 bits to 32 bits.

  • PDF

Hierarchical Evaluation of Flexibility in Production Systems

  • Tsuboner, Hitoshi;Ichimura, Tomotaka;Horikawa, Mitsuyoshi;Sugawara, Mitsumasa
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • This report examines the issue of designing an efficient production system by increasing several types of flexibility. Increasing manufacturing flexibility is a key strategy for efficiently improving market responsiveness in the face of uncertain market demand for final products. The manufacturing system comprises multiple plants, of which individual plants have multiple manufacturing lines that are designed to produce limited types of products in accordance with their size and materials. Imbalance in the workload occurs among plants as well as among manufacturing lines because of fluctuations in market demand for final products. Thereby, idleness of some manufacturing lines and longer lead times in some manufacturing lines occur as a result of the high workload. We clarify how these types of flexibility affect manufacturing performance by improving only one type of flexibility or by improving multiple types of flexibility simultaneously. The average lead time and the imbalance in workload are adopted as measures of manufacturing performance. Three types of manufacturing flexibility are interrelated: machine flexibility, routing flexibility, and process flexibility. Machine flexibility refers to the various types of operations that a machine can perform without requiring the prohibitive effort of switching from one order to another. Routing flexibility is the capability of processing a given set of part types using more than one line (alternative line) in the plant. Process flexibility results from being able to build different types of final products at the same plant.

Hybrid Multi-System-on-Chip Architecture as a Rapid Development Approach for a High-Flexibility System

  • Putra, Rachmad Vidya Wicaksana;Adiono, Trio
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • In this paper, we propose a hybrid multi.system-on-chip (H-MSoC) architecture that provides a high-flexibility system in a rapid development time. The H-MSoC approach provides a flexible system-on-chip (SoC) architecture that is easy to configure for physical- and application-layer development. The physical- and application-layer aspects are dynamically designed and modified; hence, it is important to consider a design methodology that supports rapid SoC development. Physical layer development refers to intellectual property cores or other modular hardware (HW) development, while application layer development refers to user interface or application software (SW) development. H-MSoC is built from multi-SoC architectures in which each SoC is localized and specified based on its development focus, either physical or application (hybrid). Physical HW development SoC is referred to as physical-SoC (Phy-SoC) and application SW development SoC is referred to as application-SoC (App-SoC). Phy-SoC and App-SoC are connected to each other via Ethernet. Ethernet was chosen because of its flexibility, high speed, and easy configuration. For prototyping, we used a LEON3 SoC as the Phy-SoC and a ZYNQ-7000 SoC as the App-SoC. The proposed design was proven in real-time tests and achieved good performance.

Nutritional Flexibility of Oligotrophic and Copiotrophic Bacteria Isolated from Deionzed-ultrapure Water Made by High-purity Water Manufacturing System in A Semiconductor Manufacturing Company

  • Kim, In-Seop;Kim, Seung-Eun;Hwang, Jung-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.200-203
    • /
    • 1997
  • Bacteria isolated from ultrapure water made by a high-purity water manufacturing system in a semiconductor manufacturing plant were classified into two groups which either grew in diluted nutrient broth medium (oligotrophic bacteria) or could not grow (copiotrophic bacteria). The nutritional flexibility of oligotrophic and copiotrophic bacteria was investigated. The oligotrophic bacteria were shown to be able to utilize a significantly broader range of organic substrates than the copiotrophic bateria. This finding substantiates the hypothesis that nutritional flexibility is adaptive for oligotrophic bacteria.

  • PDF

The Effects of the Fit between Forms of KM Strategy and Types of IT Capability on the Innovations of Manufacturing Firm: Innovation Openness (지식경영 전략과 정보기술 역량 간의 적합 관계가 제조기업 혁신에 미치는 영향: 혁신의 공개성)

  • Choe, Jong-min
    • The Journal of Information Systems
    • /
    • v.28 no.2
    • /
    • pp.1-23
    • /
    • 2019
  • Purpose This study exploratory investigated the effects of the fit between forms of knowledge management(KM) strategy and types of information technology(IT) capability on the kinds of innovations such as product and process innovations. In this study, the openness of innovations that affects the innovations of a firm is considered. Design/methodology/approach For this empirical study, 104 manufacturing firms' data were finally collected through field survey. For the analysis of the data, cluster analysis and multiple regression analysis were employed. Findings This study demonstrated that when a system-oriented KM strategy is adopted, IT flexibility, which supports the implementation of a system-oriented strategy, is highly employed and utilized. It was also found that under a dynamic KM strategy, both IT integration and IT flexibility are highly employed. For the innovation of a firm, it was found that when a system-oriented strategy is employed and the flexibility of IT is highly adopted, the levels of product innovation are enhanced. Under a dynamic strategy, when the degrees of IT integration and IT flexibility are high, high levels of product and process innovations were empirically found. The impact of innovation openness on the innovations of a firm were partially demonstrated. Finally, the positive impact of the innovations on the improvement of performance in manufacturing firms were demonstrated.

Dynamic Load calculation at the Bracket of High Speed Train Catenary System (고속전철 가선계 가동 브래킷의 동적하중 계산)

  • Choi, Yeon-Sun;Lee, Seung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.588-593
    • /
    • 2006
  • The catenary system of a high speed train is designed to have a flexibility to ensure the contact with a pantograph during high speed running. The flexibility inevitably entails a vibration. The vibration is transferred to a utility pole through brackets. Therefore, the examination of the dynamic load at the bracket due to the train running is necessary for the design of the bracket. In this research, an equation of motion is derived to calculate the dynamic load at the bracket during high speed running and a computer program is developed. Also, the analyzed results are compared to characterize the dynamic load at the bracket.

Using Finite Element Analysis for Mechanical Properties of Coronary Stents (유한요소법을 이용한 스텐트의 기계적 성능 비교 및 평가)

  • 조승관;김한성;이상헌;탁계래;탁승제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1306-1309
    • /
    • 2003
  • In the present paper, finite element analyses were carried out to evaluate the most important feature of a stent, that is. high radial strength and flexibility. Palmaz-Schatz 154 stent and two new models(stent A, stent B) were selected because they are the most representatives of tubular stents. Finite element analyses for the stent system were performed using ABAQUS/Explicit code. As a result, Palmaz-Schatz 154 stent shows sufficient radial strength but it needs some improvement in general properties such as high flexibility, low elastic recoil, low longitudinal contraction and low metal coverage area. Other two models show that sufficient flexibility, foreshortening and longitudinal recoil.

  • PDF