• Title/Summary/Keyword: High-density compaction

Search Result 131, Processing Time 0.027 seconds

R&D Review on the Gap Fill of an Engineered Barrier for an HLW Repository (고준위폐기물처분장 공학적방벽의 갭채움재 기술현황)

  • Lee, Jae Owan;Choi, Young-Chul;Kim, Jin-Seop;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.405-417
    • /
    • 2014
  • In a high-level waste repository, the gap fill of the engineered barrier is an important component that influences the performance of the buffer and backfill. This paper reviewed the overseas status of R&D on the gap fill used engineered barriers, through which the concept of the gap fill, manufacturing techniques, pellet-molding characteristics, and emplacement techniques were summarized. The concept of a gap fill differs for each country depending on its disposal type and concept. Bentonite has been considered a major material of a gap fill, and clay as an inert filler. Gap fill was used in the form of pellets, granules, or a pellet-granule blend. Pellets are manufactured through one of the following techniques: static compaction, roller compression, or extrusion-cutting. Among these techniques, countries have focused on developing advanced technologies of roller compression and extrusion-cutting techniques for industrial pellet production. The dry density and integrity of the pellet are sensitive to water content, constituent material, manufacturing technique, and pellet size, and are less sensitive to the pressure applied during the manufacturing. For the emplacement of the gap fill, pouring, pouring and tamping, and pouring with vibration techniques were used in the buffer gap of the vertical deposition hole; blowing through the use of shotcrete technology and auger placement and compaction techniques have been used in the gap of horizontal deposition hole and tunnel. However, these emplacement techniques are still technically at the beginning stage, and thus additional research and development are expected to be needed.

Estimation of Air Voids of Asphalt Concrete Using Non-destructive Density Testing (비파괴 밀도시험을 통한 아스팔트 콘크리트의 공극률 추정 연구)

  • Na, Il-ho;Lee, Sung-Jin;Yoon, Ji-Hyeon;Kim, Kwang-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.111-119
    • /
    • 2018
  • The air-void is known to be one of the influencing factors for estimating long-term performance of asphalt concrete. Most of all, confirming air void or density of pavement layer is important for quality control of field compaction level of asphalt concrete pavement. In this study, a non-nuclear type non-destructive density gage (NDDG) was used to estimate compacted air-voids of asphalt pavement as a non-destructive test method. Asphalt concrete slab specimens were prepared using 6 types of asphalt mixes in laboratory (lab) for lab NDDG test. Four different base structure materials were used to find out if there were any differences due to the type of base structure materials. The actual air-voids and NDDG air-voids were measured from 6 asphalt concrete slabs. Four sections of field asphalt pavements were tested using the NDDG, and actual air voids were also measured from field cores taken from the site where the NDDG air-void was measured. From lab and field experimental tests, it was found that the air-voids obtained by NDDG were not the same as the actual air-voids measured from the asphalt concrete specimen. However, it was possible to estimate air voids based on the relationship obtained from regression analysis between actual and NDDG air voids. The predicted air-voids based on the NDDG air-voids obtained from 50mm depth were found to be reliable levels with $R^2{\fallingdotseq}0.9$. Therefore, it was concluded that the air-voids obtained from NDDG could be used to estimate actual air-voids in the field asphalt pavement with a relatively high coefficient of determination.

Effect of Coarse mateflal on the mechanical properties of Soil (조립재가 흙의 역학적 성질에 미치는 영향)

  • 윤충섭;김호일
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.3
    • /
    • pp.57-69
    • /
    • 1989
  • The study was carried out for the strength parameter of coarse grained Soil and slope stability analysis of earth dam. The test samples were taken fifteen kinds of soil from cohesive soil to coarse gravel. The degree of compaction of test samples for shear test and permeability test was chosen 95 percentage of maximum dry density. The results of this study are as follows ; 1.The maximum dry density(Yd) of coarse grained soil increase in proportion to coarse particles(P) with the relation of Y d= 1.609+0.0043P. 2.The coefficients of permeability(k) decrease by the increase of fine particles(n) with the relation of k=0.0426e-0 185n. 3.The cohesions of soil decrease by the increase of coarse particles, but internal friction angles are more increased in same condition. 4.The internal friction angles(${\Phi}$) decrease in inverse proportion to void ratio(e) with the relation of ${\Phi}$ = 73.068 - 69.268e. 5.The strength parameters( Ct ${\Phi}$t) by triaxial compression test are clearly smaller than that (Cd, ${\Phi}$d) by direct shear test in fine grained soil, but the differences between both parameters are a little in coarse grained soil.The relations of both parameters are as follows; Ct = O.544Cd + 0.04 ${\Phi}$t= 1.282${\Phi}$d-2306 6.In cohesive soil, the strength parameters( Cl ${\Phi}$l) by large size shear test apparatus are similar to the strength parameters(Cs , ${\Phi}$s) by small size shear test appratus, but Cs and ${\Phi}$s values are larger than Cl and ${\Phi}$l values from 10 percentage to 20 percentage in coarse grained soil. 7.The fine grained soil is inappropriate to high dam more than 20 meters and it must be taken coarse grained soil with high internal friction angle for high dam.

  • PDF

Characteristics of Soil Stress using Expansion Liquid Sheet (팽창약액시트를 이용한 지중응력 특성에 관한 연구)

  • Kang, Hyounhoi;Kim, Juho;Chung, Yoonseok;Park, Jeongjun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • In this study, to investigate the strength enhancement and stress transfer effect of the inflatable chemicals used in the recovery of soft ground or partial settlement, the dilatant solution was prepared and classified by measuring the density and the earth pressure in the sand ground. The inflation reinforcing agent was prepared by injecting into a separate impervious vacuum sheet by dividing into a relatively high expansion group and a low expansion group, and a cementation experiment was performed in the lower part of the homogeneously formed model ground. As a result, reinforcing effect was shown up to about 15cm above the expansion reinforcement, and the soil pressure showed a compaction tendency similar to the concentrated load of $1.150{\sim}11.298t/m^2$.

Mechanical Properties of Surface Densified PM Gears (표면치밀화 기술에 의해 제조된 소결 기어의 기계적 특성)

  • Kim, Ki-Jung;Kim, Ki-Bum;Lee, Doo-Hwan;Park, Jong-Kwan;Jeong, Dong-Guk
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.189-195
    • /
    • 2012
  • A novel PM (powder metallurgy) steel for automotive power-train gear components was developed to reduce manufacturing cost, while meeting application requirements. The high-density PM steel was manufactured by mixing using special Cr-Mo atomized iron powders, high-pressure compaction, and sintering. Tensile strength, charpy impact, bending fatigue, and contact fatigue tests for the PM steel were carried out and compared to conventional forged steel. Pinion gears for auto-transmission were also manufactured by helical pressing, sintering, and surface densification process. In order to evaluate the durability of the PM parts, auto-transmission durability tests were performed using dynamometer tests. Results showed that the PM steel fulfilled the requirements for pinion gears indicating suitable tensile, bending fatigue, contact fatigue strengths and improved gear tooth profile. The PM gears also showed good performance during the transmission durability tests. As a result, the PM gears showed significant potential to replace the conventional forged steel gears manufactured by tooth machining (hobbing, shaving, and grinding) processes.

Cold Compaction Behavior of Nano and Micro Aluminum Powder under High Pressure

  • Kim, Dasom;Park, Kwangjae;Kim, Kyungju;Cho, Seungchan;Hirayama, Yusuke;Takagi, Kenta;Kwon, Hansang
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this study, micro-sized and nano-sized pure aluminum (Al) powders were compressed by unidirectional pressure at room temperature. Although neither type of Al bulk was heated, they had a high relative density and improved mechanical properties. The microstructural analysis showed a difference in the process of densification according to particle size, and the mechanical properties were measured by the Vickers hardness test and the nano indentation test. The Vickers hardness of micro Al and nano Al fabricated in this study was five to eight times that of ordinary Al. The grain refinement effect was considered to be one of the strengthening factors, and the Hall-Petch equation was introduced to analyze the improved hardness caused by grain size reduction. In addition, the effect of particle size and dispersion of aluminum oxide in the bulk were additionally considered. Based on these results, the present study facilitates the examination of the effect of particle size on the mechanical properties of compacted bulk fabricated by the powder metallurgy method and suggests the possible way to improve the mechanical properties of nano-crystalline powders.

Comparison of Spring Growth Characteristics of Creeping Bentgrass(Agrogtis palustris Huds.) Cultivars (봄철 크리핑 벤트그래스의 품종별 특성비교)

  • Lee, Hyung-Seok;Hong, Beom-Seok;Kim, Kyung-Duck;Tae, Hyun-Sook
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.155-161
    • /
    • 2007
  • This study was initiated to evaluate the growth characteristics of creeping bentgrass cultivars during the sprlng season. The green-up of 'CY' and 'T-1' were about 2 weeks earlier than the other cultivars followed by 'Penn A' 'Crenshaw', 'L> 'Penncross' > 'Putter' > 'Dominant' > 'SR1020' in that order. 'T-1' and 'CY-2' had the highest chlorophyll content while 'Penncross' had the lowest during the spring. 'Crenshaw' and 'Penn A-4' showed the highest shoot density in this research, followed by 'CY-2', 'L-93', 'T-1', 'Putter', 'Dominant', 'SR1020', and 'Penncross' in that order. In case of root length, 'CY-2' and 'L-93' were the best cultivars, but 'Penncross' was worst during the spring. 'CY-2' had the best visual quality among the cultivars, 'T-1' and 'Crenshaw' also classified as high visual quality group whereas 'SR1020', 'Dominant' and 'Penncross' were grouped in relatively low quality. In conclusion, 'CY-2', 'T-1' and 'Crenshaw' were the best cultivars in terms of growth characteristics in spring. Conversely, 'SR1020' and 'Penncross' were the poorest cultivars. These results can be more useful for management or constructing of golf courses. However, this research was performed with little compaction stress. More information is needed on the tolerance to compaction stress of these bentgrass cultivars.

Microstructure and Mechanical Properties of CNT/Al Composite Fabricated by a Powder-in-Sheath Rolling Method utilizing Copper Tube as a Sheath (구리튜브를 피복재로 이용한 분말시스압연법에 의해 제조된 CNT/Al 복합재료의 미세조직 및 기계적 특성)

  • Lee, Seong-Hee
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.343-348
    • /
    • 2014
  • A powder-in-sheath rolling (PSR) process utilizing a copper alloy tube was applied to a fabrication of a multi-walled carbon nanotube (CNT) reinforced aluminum matrix composite. A copper tube with an outer diameter of 30 mm and a wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol% was filled in the tube by tap filling and then processed to 93.3% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the PSR decreased slightly with increasing of CNTs content, but showed high value more than 98%. The average hardness of the 5%CNT/Al composite increased more than 3 times, compared to that of unreinforced pure Al powder compaction. The hardness of the CNT/Al composites was some higher than that of the composites fabricated by PSR using SUS304 tube. Therefore, it is concluded that the type of tube affects largely on the mechanical properties of the CNT/Al composites in the PSR process.

Characteristics of Crushed Oyster-shell as a Substitute of Sand for Sand Compaction Pile (모래다짐말뚝(SCP) 재료로서 파쇄 굴패각의 특성조사)

  • 윤길림;윤여원;채광석;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.281-290
    • /
    • 2003
  • In order to investigate recycling possibility as a construction material of oyster-shells, the geotechnical characteristics including permeability, confined compression and shear strength of crushed oyster shell were quantitatively examined in terms of fineness modulus and relative density of crushed oyster-shell. Experimental results show that the crushed oyster-shells are lighter than sand in weight, and have similar characteristics on permeability and shear strength to sandy soils. The oyster-shell can be considered as highly crushable material but not much crushable with existing high loads. Based on the laboratory test results, it is highly fudged that the crushed oyster-shell can be a substitute of sand as SCP materials.

Severe acid rain simulation using geotechnical experimental tests with mathematical modeling

  • Raheem, Aram M.;Ali, Shno M.
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.549-565
    • /
    • 2022
  • Severe acid rains can be a major source for geotechnical and environmental problems in any soil depending on the acid type and concentration. Hence, this study investigates the individual severe effects of sulfuric, hydrochloric and nitric acids on the geotechnical properties of real field soil through a series of experimental laboratory tests. The laboratory program consists of experimental tests such as consistency, compaction, unconfined compression, pH determination, electrical conductivity, total dissolved salts, total suspended solids, gypsum and carbonates contents. The experimental tests have been performed on the untreated soil and individual acid treated soil for acid concentrations range of 0% to 20% by weight. In addition, a unique hyperbolic mathematical model has been used to predict significant geotechnical characteristics for acid treated soil. The plastic and liquid limits and optimum moisture content have been increased under the effect of all the used acids whereas the maximum dry density and unconfined stress-strain behavior have been decreased with increasing the acid concentrations. Moreover, the used hyperbolic mathematical model has predicted all the geotechnical characteristics very well with a very high coefficient of determination (R2) value and lowest root mean square error (RMSE) estimate.