• Title/Summary/Keyword: High-density Polyethylene

Search Result 363, Processing Time 0.034 seconds

Optimal Condition of Microporous Membrane for Bone Marrow Stromal Cell Allotransplantation to Stimulate Wound Healing in Vitro (창상치유목적의 골수기질세포 동종이식을 위한 고분자막의 조건)

  • Lee, Eun-Sang;Kim, Myeong-Joo;Han, Seung-Kyu;Hong, Sung-Taek;Kim, Woo-Kyung
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.509-518
    • /
    • 2010
  • Purpose: Major drawbacks of conventional bone marrow stromal cells (BSCs) transplantation method are mainly caused by direct transplanted cell to host cell interactions. We hypothesized that separation of the transplanted cells by a microporous membrane might inhibit most of the potential adverse effects and induce superior effect. The purpose of the study is to determine the optimal condition of the microporous membrane. Methods: First, BSCs were placed in polyethylene terephthalate (PET) transwell inserts with 3, 8, or $12{\mu}m$ pore size, and cultured in 24 well culture plates. After 5 days, bottoms of the plates were observed for presence of attached BSCs in monolayer and cell numbers were evaluated. Second, BSCs were placed PET, polycarbonate (PCT), and mixed cellulose esters (MCE) transwell inserts with 3 and $8{\mu}m$ pore size, and cultured in 24 well culture plates. After 3 days, the supernatants of the media left in culture plate were analyzed for collagen, vascular endothelial growth factor (VEGF), platelet derived growth factor BB (PDGF-BB), and basic fibroblast growth factor (bFGF). Third, BSCs were placed in 15% and 70% of the PET membrane with $3{\mu}m$ pore size. All the experimental conditions and methods were same as the second study. Results: The optimal pore sizes to prevent BSC leakage were $3{\mu}m$ and $8{\mu}m$. The amounts of type I collagen and three growth factors tested did not show significant differences among PET, PCT, and MCE groups. However, the collagen, VEGF, and bFGF levels were much higher in the high (70%) density group than in the low (15%) density group. Conclusion: This study revealed that the optimal pore size of membrane to prevent direct BSC to recipient cell contact is in between $3{\mu}m$ and $8{\mu}m$. Membrane materials and pore sizes do not influence the collagen and growth factor passage through the membrane. The most striking factor for collagen and growth factor transport is pore density of the membrane.

Freshness Comparison of Lettuce (Lactuca sativa L.) in accordance with Storage and Packaging Method on High-temperature Period (결구상추 고온기 포장 및 저장방법에 따른 신선도 비교)

  • Bark, Doe-Ey;Yoon, Yi-Na;Woo, Ye Jinn;Cheung, Gum Hang;Hwang, Sae Bom;Park, SuHyoung;Woo, Young-June;Shin, Chul;Choi, Dong-soo;Lim, Junhyung;Park, See Eun;Lee, Jung-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • Effect of packaging and storage methods for enhancing the shelf life and improving the postharvest quality of lettuce (Lactuca sativa L.) was studied during high temperature period. Lettuces were packed using four packaging and storage types: (A) plastic box container (control); (B) plastic box container covered with high density polyethylene (HDPE) film; (C) plastic box container with lettuce wrapped in linear low-density polyethylene (LLD-PE) film; and (D) plastic box container with lettuce with its stem. The quality parameters, such as fresh weight loss, SPAD value, and appearance of lettuce were investigated. The lettuce wrapped with LLD-PE film inside the plastic box container showed the lowest weight loss, highest SPAD value and best appearance compared to those exposed to the other packaging and storage methods during the three-week storage at $2^{\circ}C$. The results indicate that the marketability of lettuce can be optimized if proper packaging and storing is adopted. Prolonging the freshness even on low temperature storage will increase the potential of its sale ability in the domestic market even during summer season.

  • PDF

Fire Hazard of PP and LLDPE dust in Chemical Plant Process (석유화학플랜트에서 발생하는 PP(Poly Propylene) 및 LLDPE(Linear Low Density Poly Ethylene) 분진의 연소 위험성에 관한 연구)

  • 김정환;이창우;현성호;권경옥
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • Thermal properties of PP and LLDPE dusts from chemical plant and their risks of coexisting with oxidizer were investigated by a pressure vessel. The thermal decomposition of PP and LLDPE dusts with temperature using DSC and the weight loss with temperature using TGA were also investigated to find the thermal hazard of PP and LLDPE dusts. Using the pressure vessel which can estimate ignition and explosion of PP and LLDPE dusts coexisting with oxidizer, a series of bursting of a rupture disc, experiments has been conducted by varying the orifice diameters the weight ratio of the sample coexisting with oxidizers and the species of oxidizer. And fire gases was measured by gas analyser ($ECOM-A^+$). According to the results of the thermal analysis of PP and LLDPE dusts, the decomposition temperature range of PP and LLDPE dusts was 200 to 350 and 300 to $500^{\circ}c$, respectively. The risk of PP and LLDPE dusts coexisting with oxidizer was increased as the orifice diameter was decreased. On the other hand, it was increased as the weight ratio of the sample to the oxidizer were increased. In addition, the risk of PP and LLDPE dusts coexisting with oxidizer was affected by the decomposition temperature of the sample and oxidizer. It is found that the risk of fire becomes high when the decomposition temperature of the sample is about same as that of oxidizer. Also, the fire gases was occurred carbon monoxide and carbon dioxide. The amount of carbon monoxide generated was found to be much higher in PP decomposition than in LLDPE due to incomplete combustion of PP which has high content of carbon in chemical compound.

  • PDF

Enhancing the Performance of Polypropylene Fiber Reinforced Cementitious Composite Produced with High Volume Fly Ash (폴리프로필렌 섬유로 보강된 하이볼륨 플라이애시 시멘트 복합재료의 성능 향상 기법)

  • Lee, Bang Yeon;Bang, Jin Wook;Kim, Yun Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.118-125
    • /
    • 2013
  • The synthetic fibers including Polyvinyl alcohol and Polyethylene fibers have been successfully used in the manufacture of high ductile fiber reinforced cementitious composites. Polypropylene (PP) fiber has also been used in composites, not for the purpose of achieving a high level of tensile ductility but to improve the fire resistance performance of concrete exposed to high temperatures. This paper discusses the method for enhancing the performance of composites supplemented with PP fiber. Five types of mixture proportions were designed with high volume fly ash for testing the performance of composites. Type I cement and fly ash F were used as binding materials. The water-to-binder ratio was 0.23~0.25, and the amount of PP fiber used was 2 vol%. Polystyrene bead were also used to increase the tensile ductility of composites. A series of experiments including slump, density, compression and uniaxial tension tests were performed to evaluate the performance of cementitious composites supplemented with PP fiber. From the test results, it was exhibited that the performance of composites supplemented with PP fiber can be enhanced by adopting the mechanics and statistics theory.

Effects of Draw Ratio and Additive CaCO3 Content on Properties of High-Performance PE Monofilament (연신비와 첨가제 CaCO3가 PE 모노필라멘트의 물성에 미치는 영향)

  • Park, Eun-Jeong;Kim, Il-Jin;Lee, Dong-Jin;Kim, Jung-Soo;Lee, Young-Hee
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.290-296
    • /
    • 2021
  • The effect of draw ratio (8, 10, 12, 14 times) and additive CaCO3 content (0, 0.5, 1.0, 1.5, 2.0, and 3.0 wt%) on the properties of high-performance PE monofilament was investigated in this study. As the draw ratio increased (8-14 times), the melting enthalpy (ΔHf), crystallinity, specific gravity, and tensile strength increased significantly. However, the draw ratio had little effect on the melting temperature (Tm) and crystallization temperature (Tc). The seawater fastness (stain and fade) of the hydrophobic PE monofilament prepared in this study showed an excellent grade of 4-5 in all draw ratios. To investigate the effect of the additive CaCO3 content on the properties of high-performance PE monofilament, the draw ratio was fixed at 14 times. It was found that the tensile strength of the PE monofilament sample containing 0.5 wt% of CaCO3 was much greater compared to the sample without CaCO3, but the elongation of the sample containing 0.5 wt% of CaCO3 was much less than the sample with 0 wt% CaCO3. However, in the case of the sample containing more than 0.5 wt% CaCO3, the tensile strength slightly decreased and the elongation slightly increased as the CaCO3 content increased. The seawater fastness (stain and fade) of the hydrophobic PE monofilament showed excellent grades of 4-5, regardless of the amount of additives. From the above results, it was found that the maximum draw ratio of 14 times with an additive of 0.5 wt% CaCO3 are the optimal conditions for manufacturing high-performance marine fusion materials with various fineness (denier) with high strength and low elongation.

The Evaluation of Geosynthetic Clay Liner as a barrier layer for the Final Cover System in landfill (폐기물 매립지 최종복토 차단층으로서 Geosynthetic Clay Liner 적용성 평가)

  • Lee, Jung-Lan;Moon, Chul-Hwan;Jung, Chan-Kee;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.2
    • /
    • pp.23-29
    • /
    • 2004
  • One of the most important concern in the design of barrier layer in to protect the water through the landfill. The barrier layer consists of a single compacted clay liner(CCL) or a composite liner with high density polyethylene(HDPE). The construction of barrier layer at the edge of cover system usually has some problems because of steep slope in the landfill. In this study the authors evaluate the geosynthetic clay liner(GCL) as a barrier layer at the edge of the final cover system in landfill. The GCLs were simulated the stability of slope, the HELP(Hydrologic Evaluation of Landfill Performance) and the durability of environmental situation. As the results, the GCL has more stable than the CCL. Therefore, the authors suggest that the GCL in good for the barrier layer of the final cover system in the landfill.

  • PDF

A Study on Life-Cycle Environmental Impact of Synthetic Resin Formwork (합성수지 거푸집의 전과정 환경영향평가에 관한 연구)

  • Nam, Kyung-Yong;Yang, Keun-Hyeok;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.245-252
    • /
    • 2020
  • Synthetic resin formwork is made of lightweight high-density polyethylene(HDPE). This study used a process flow chart that satisfies the system boundary (such as Cradle-to- Product shipmen ) required by ISO FDIS 13352 to evaluate the entire process of synthetic resin foam using. The entire life cycle inventory (LCI) database calculated from input energy sources, materials used, transportation methods, and manufacturing processes at the system boundary was analyzed. Based on the environmental impact assessment index methodology of the Ministry of Environment from the LCI data analysis of synthetic resin formwork, the environmental impact assessment was carried out through classification, normalization, characterization, and weighting process. The experimental results are as follows the amount of CO2 (carbon) emission considering the number of conversions was about 32% lower than that of the Euroform. This shows that the use of synthetic resin formwork reduces material production by half compared to Euroform and reduces CO2 (carbon) emissions.

Amine functionalized plasma polymerized PEG film: Elimination of non-specific binding for biosensing

  • Park, Jisoo;Kim, Youngmi;Jung, Donggeun;Kim, Young-Pil;Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.378.2-378.2
    • /
    • 2016
  • Biosensors currently suffer from severe non-specific adsorption of proteins, which causes false positive errors in detection through overestimation of the affinity value. Overcoming this technical issue motivates our research. Polyethylene glycol (PEG) is well known for its ability to reduce the adsorption of biomolecules; hence, it is widely used in various areas of medicine and other biological fields. Likewise, amine functionalized surfaces are widely used for biochemical analysis, drug delivery, medical diagnostics and high throughput screening such as biochips. As a result, many coating techniques have been introduced, one of which is plasma polymerization - a powerful coating method due to its uniformity, homogeneity, mechanical and chemical stability, and excellent adhesion to any substrate. In our previous works, we successfully fabricated plasmapolymerized PEG (PP-PEG) films [1] and amine functionalized films [2] using the plasma enhanced chemical vapor deposition (PECVD) technique. In this research, an amine functionalized PP-PEG film was fabricated by using the plasma co-polymerization technique with PEG 200 and ethylenediamine (EDA) as co-precursors. A biocompatible amine functionalized film was surface characterized by X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The density of the surface amine functional groups was carried out by quantitative analysis using UV-visible spectroscopy. We found through surface plasmon resonance (SPR) analysis that non-specific protein adsorption was drastically reduced on amine functionalized PP-PEG films. Our functionalized PP-PEG films show considerable potential for biotechnological applications such as biosensors.

  • PDF

MIDIFACIAL CHANGES FOLLOWING THE PARANASAL AUGMENTATION WITH ALLOPLASTIC $MEDPOR^{(R)}$ (인공이식재 $MEDPOR^{(R)}$ 를 이용한 중안모증가술(PARANASAL AUGMENTATION)과 측모의 변화)

  • Kim, Sun-Jong;Kim, Myung-Rae;Choi, Jang-Woo;Jung, Sang-Hoon;Lee, Chang-Kook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.2
    • /
    • pp.177-183
    • /
    • 1996
  • With the increasing esthetic requirement in orthognathic surgeries, midfacial corrective surgeries were developed to improve the paranasal depression. Augmentation with autogenous bones has long been the standard in facial reconstruction, however limited graft availability, donor site morbidity, and difficulties in 3-dimensional shaping were led to limited use. Porous high density polyethylene$(Medpor{(R)})$ was introduced in the 1970s as an alloplastic implants. It can be used in various size and shapes, and shortend operation time. The purpose of this study is to determine, by means of cephalometrics, the degree of long term stability and gaining of the overlying soft tissue thickness. The results were as followings : 1. There was no evidence of foreign body reaction, infection, and tissue necrosis. 2. $(Medpor{(R)})$ implants had an advantage of clinical use ; easy to contour and adapt to obtain a precise 3-dimensional construction. 3. Cephalometric study of 16 cases of paranasal augmentation revealed an overall increase of soft tissue thickness of approximately 82.1% in 6-months following. 4. The successful results could be obtained under the aseptic handling.

  • PDF

Design of Neutron Shielder for Reducing Background of Low Level Gamma Ray Spectrometer (극저준위 감마선 분광시스템의 백그라운드 저감화를 위한 중성자 차폐체 설계)

  • Kim, Tae-Wook;Park, Jong-Mook;Park, Jong-Gil;Shin, Sang-Woon;Jun, Jae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.67-71
    • /
    • 2001
  • In order to shield the neutrons affecting the background of Low Level Gamma Ray Spectrometer, a neutron shielder was designed. The method used in this study for neutron shielding was the deceleration of fast neutrons by high density polyethylene(HDPE) and the absorption of those slowing-down neutrons by $B_4C$. The calculation results of neutron Interaction in HDPE using Monte Carlo simulation code MCNP4B showed that the thermal-neutron flux was maximum at 10 cm thickness of HDPE. The results also showed that 95% of the thermal neutrons were absorbed by 2 mm thickness of $B_4C$ absorber Consisted of 30 w% $B_4C$ and 70 w% polymer. The results of the Monte Carlo calculation were in good agreement with the experimental value obtained by a neutron shielding apparatus designed for this purpose.

  • PDF