• Title/Summary/Keyword: High-aspect Ratio

Search Result 958, Processing Time 0.026 seconds

High-Aspect-Ratio Nanoscale Patterning in a Negative Tone Photoresist

  • Ryoo, Kwangki;Lee, Jeong Bong
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.56-61
    • /
    • 2015
  • The demand for high-aspect-ratio structures has been increasing in the field of semiconductors and other applications. Here, we present the commercially available negative-tone SU-8 as a potential resist that can be used for direct patterning of high-aspect-ratio structures at the submicron scale and the nanoscale. Such resist patterns can be used as polymeric molds to create high-aspect-ratio metallic submicron and nanoscale structures by using electroplating. Compared with poly (methyl methacrylate) (PMMA), we found that the negative tone resist required an exposure dose that was less than that of PMMA of equal thickness by a factor of 100-150. Patterning of up to 4:1 aspect ratio SU-8 structures with a minimum feature size of 500 nm was demonstrated. In addition, nanoimprint lithography was studied to further extend the aspect ratio to realize a minimum feature size of less than 10 nm with an extremely high aspect ratio in the negative resist.

The Influences of Process Parameters in Piercing with a High Aspect Ratio for Thick Aluminum Sheet (알루미늄 판재의 고 세장비 피어싱가공을 위한 작업변수의 영향)

  • Kim, J.G.;Kim, J.B.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.1
    • /
    • pp.23-28
    • /
    • 2014
  • The aspect ratio of a hole is defined as the ratio of the thickness to the diameter of the sheet metal. Most holes in the sheet metal industry are made by piercing. However, for thick sheets, which have an aspect ratio greater than 2, a machining process like drilling instead of piercing is usually used to make holes. In the current study, piercing, which is a shearing process, is evaluated to punch a hole with a high aspect ratio by using a newly designed die set-up. The piercing die was manufactured to prevent the punch from buckling and also to improve the alignment between the die components. An aluminum alloy sheet was selected for the experiments. The influence of several process parameters such as sheet thickness, clearance and stripping force were investigated. Experimentally, a hole with an aspect ratio of 5 was pierced. The resulting hole had a clean surface and the dimensional accuracy of pierced hole was considerably improved with decreasing clearance between punch and die. It is also shown that the larger penetration depth of the effective sheared surface can be achieved for high aspect ratio piercing relative to conventional piercing with a low aspect ratio.

Design and Fabrication of a Micro-Heat Pipe with High-Aspect-Ratio Microchannels (고세장비 미세채널 기반의 마이크로 히트파이프 설계 및 제조)

  • Oh, Kwang-Hwan;Lee, Min-Kyu;Jeong, Sung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.164-173
    • /
    • 2006
  • The cooling capacity of a micro-heat pipe is mainly governed by the magnitude of capillary pressure induced in the wick structure. For microchannel wicks, a higher capillary pressure is achievable for narrower and deeper channels. In this study, a metallic micro-heat pipe adopting high-aspect-ratio microchannel wicks is fabricated. Micromachining of high-aspect-ratio microchannels is done using the laser-induced wet etching technique in which a focused laser beam irradiates the workpiece placed in a liquid etchant along a desired channel pattern. Because of the direct writing characteristic of the laser-induced wet etching method, no mask is necessary and the fabrication procedure is relatively simple. Deep microchannels of an aspect ratio close to 10 can be readily fabricated with little heat damage of the workpiece. The laser-induced wet etching process for the fabrication of high-aspect-ratio microchannels in 0.5mm thick stainless steel foil is presented in detail. The shape and size variations of microchannels with respect to the process variables, such as laser power, scanning speed, number of scans, and etchant concentration are closely examined. Also, the fabrication of a flat micro-heat pipe based on the high-aspect-ratio microchannels is demonstrated.

Fabrication of Solution-Based Cylindrical Microlens with High Aspect Ratio (고종횡비를 갖는 용액기반 원통형 마이크로렌즈 제조)

  • Jeon, Kyungjun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.70-76
    • /
    • 2021
  • A cylindrical microlens (CML) has been widely used as an optical element for organic light-emitting diodes (OLEDs), light diffusers, image sensors, 3D imaging, etc. To fabricate high-performance optoelectronic devices, the CML with high aspect ratio is demanded. In this work, we report on facile solution-based processes (i.e., slot-die and needle coatings) to fabricate the CML using poly(methyl methacrylate) (PMMA). It is found that compared with needle coating, slot-die coating provides the CML with lower aspect ratio due to the wide spread of solution along the hydrophilic head lip. Although needle coating provides the CML with high aspect ratio, it requires a high precision needle array module. To demonstrate that the aspect ratio of CML can be enhanced using slot-die coating, we have varied the molecular weight of PMMA. We can achieve the CML with higher aspect ratio using PMMA with lower molecular weight at a fixed viscosity because of the higher concentration of PMMA solute in the solution. We have also shown that the aspect ratio of CML can be further boosted by coating it repeatedly. With this scheme, we have fabricated the CML with the width of 252 ㎛ and the thickness of 5.95 ㎛ (aspect ratio=0.024). To visualize its light diffusion property, we have irradiated a laser beam to the CML and observed that the laser beam spreads widely in the vertical direction of the CML.

Fabrication of Large Area Stamp with High Aspect Ratio Micro Intaglio Features (고세장비 마이크로 음각 형상을 갖는 대면적 스탬프의 제작)

  • Lee, Byung-Soo;Han, Jeong-Won;Han, Jung-Jin;Lim, Ji-Seok;Yoo, Yeong-Eun;Je, Tae-Jin;Kang, Shin-Ill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.84-87
    • /
    • 2009
  • This paper describes a novel method for fabricating large area metallic stamp with high aspect ratio micro intaglio features. Micro machined brass master with pillar and larger width groove patterns were electroformed to form inverse structures on the large area metallic stamp. This enabled large area metallic stamp with fine micro high aspect ratio micro intaglio features which were small width groove patterns and quadrilateral hole patterns that cannot be fabricated by direct micro machining process. Fabricated large area metallic stamp with high aspect ratio micro intaglio features was measured and analyzed.

  • PDF

A technique to avoid aspect-ratio locking in QUAD8 element for extremely large aspect-ratios

  • Rajendran, S.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.633-648
    • /
    • 2011
  • This paper investigates the aspect-ratio locking of the isoparametric 8-node quadrilateral (QUAD8) element. An important finding is that, if finite element solution is carried out with in exact arithmetic (i.e., with no truncation and round off errors), the locking tendency of the element is completely avoided even for aspect-ratios as high as 100000. The current finite element codes mostly use floating point arithmetic. Thus, they can only avoid this locking for aspect-ratios up to 100 or 1000. A novel method is proposed in the paper to avoid aspect-ratio locking in floating point computations. In this method, the offending terms of the strain-displacement matrix (i.e., $\mathbf{B}$-matrix) are multiplied by suitable scaling factors to avoid ill-conditioning of stiffness matrix. Numerical examples are presented to demonstrate the efficacy of the method. The examples reveal that aspect-ratio locking is avoided even for aspect-ratios as high as 100000.

Three-Dimensional Numerical Study on the Vortex Flow in a Horizontal Channels with High Viscous Fluid(2) (수평채널 내 고 점성유체의 볼텍스 유동에 관한 3차원 수치해석(2))

  • Piao, Ri-Long;Kim, Jeong-Soo;Bae, Dae-Seok
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.36-42
    • /
    • 2015
  • TMixed convective flow in a bottom heated and top cooled rectangular channel can be significantly affected by the channel aspect ratio, Prandtl number, Reynolds number, Rayleigh number and angle of inclination. In such a mixed convection, the flow pattern plays an important role in various technological processes. In this study, a numerical investigation is carried out to explore mixed convection in a three-dimensional rectangular channel with bottom heated and top cooled uniformly. The three-dimensional governing equations are discretized using the finite volume method. In the range of low Reynolds number($0{\leq}Re{\leq}9.6{\times}10^{-2}$), the effects of the aspect ratio($2{\leq}AR{\leq}12$) and Gr/Re are presented and discussed. The longitudinal roll number in the channel is increased with increasing aspect ratio, and the roll number induced, regardless of the aspect ratio number, is even in the range of aspect ratios between 2 and 12, New vortex flow structure containing inclined longitudinal rolls is found, which is affected by aspect ratio and Reynolds number. The ratio Gr/Re is used to check the relative magnitudes of forced and natural convection in the mixed convective flow of high viscous fluid.

Experimental and Improved Numerical Studies on Aerodynamic Characteristics of Low Aspect Ratio Wings for a Wing-In Ground Effect Ship

  • Ahn, Byoung-Kwon;Kim, Hyung-Tae;Lee, Chang-Sup;Lew, Jae-Moon
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.3
    • /
    • pp.14-25
    • /
    • 2008
  • Recently, there has been a serious effort to design a wing in ground effect (WIG) craft. Vehicles of this type might use low aspect ratio wings defined as those with smaller than 3. Design and prediction techniques for fixed wings of relatively large aspect ratio are reasonably well developed. However, Aerodynamic problems related to vortex lift on wings of low aspect ratio have made it difficult to use existing techniques. In this work, we firstly focus on understanding aerodynamic characteristics of low aspect ratio wings and comparing the results from experimental measurements and currently available numerical predictions for both inviscid and viscous flows. Second, we apply an improved numerical method, "B-spline based high panel method with wake roll-up modeling", to the same problem.

Micro EDM with Ultrasonic Work Fluid Vibration for Deep Hole Machining (깊은 구멍 가공을 위한 가공액 초음파 가진 미세 방전가공)

  • Je Sung Uk;Lee Hae Sung;Chu Chong Nam;Kim Duck Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.47-53
    • /
    • 2005
  • Microholes with high aspect ratio are required in microstructures. Among various methods for producing the microhole, micro electrical discharge machining (MEDM) is very effective and useful process. But, it is difficult to machine the high aspect ratio holes below $100\;{\mu}m$ in diameter because machining condition becomes unstable due to bad removal of debris at deep hole. In this paper, ultrasonic vibration is applied to MEDM work fluid to make a high aspect ratio micro hole. It is shown that the vibration is effective in circulating the debris and increasing the machining rate. As a result, produced was a micro hole with $92\;{\mu}m$ entrance diameter, $81\;{\mu}m$ exit diameter and aspect ratio 23.

The Effect of Aspect Ratio on Aerodynamic Characteristics of Flapping Motion (날개의 종횡비가 날개 짓 운동의 공기역학적 특성에 미치는 영향)

  • Oh, Hyun-Taek;Choi, Hang-Cheol;Kim, Kwang-Ho;Chung, Jin-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.217-220
    • /
    • 2006
  • The lift and drag forces produced by a wing of a given cross-sectional profile are dependent on the wing planform and the angle of attack. Aspect ratio is the ratio of the wing span to the average chord. For conventional fixed wing aircrafts, high aspect ratio wings produce a higher lift to drag ratio than low ones for flight at subsonic speeds. Therefore, high aspect ratio wings are used on aircraft intended for long endurance. However, birds and insects flap their wings to fly in the air and they can change their wing motions. Their wing motions are made up of translation and rotation. Therefore, we tested flapping motions with parameters which affect rotational motion such as the angle of attack and the wing beat frequency. The half elliptic shaped wings were designed with the variation of aspect ratio from 4 to 11. The flapping device was operated in the water to reduce the wing beat frequency according to Reynolds similarity. In this study, the aerodynamic forces, the time-averaged force coefficients and the lift to drag ratio were measured at Reynolds number 15,000 to explore the aerodynamic characteristics with the variation of aspect ratio. The maximum lift coefficient was turned up at AR=8. The mean drag coefficients were almost same values at angle of attack from $10^{\circ}$ to $40^{\circ}$ regardless of aspect ratio, and the mean drag coefficients above angle of attack $50^{\circ}$ were decreased according to the increase of aspect ratio. For flapping motion the maximum mean lift to drag ratio appeared at AR=8.

  • PDF