• Title/Summary/Keyword: High-Temperature Oxidation

Search Result 1,130, Processing Time 0.034 seconds

Oxidation behavior of (Mo1-xWx)Si2 high-temperature heating elements (초고온용 발열체 (Mo1-xWx)Si2의 산화거동에 대한 연구)

  • Lee, Sung-Chul;Myung, Jae-ha;Kim, Yong-Nam;Jeon, Minseok;Lee, Dong-won;Oh, Jong-Min;Kim, Bae-Yeon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.200-207
    • /
    • 2020
  • MoSi2, (Mo1/2W1/2)Si2, and WSi2 powders were synthesized by self-propagating high-temperature synthesis (SHS) method. The synthesized powders were heat-treated at 500, 1,000, 1,200, 1,300, 1,400, 1,500 and 1,600℃ in ambient atmosphere. Oxidation of Mo-W silicide powder was found at low temperature of 500℃. XRD structure analysis and DTA/TG data showed that MoO3 was formed with 500℃ heat treatment for 1 hour, and that it was α-cristobalite phase that was formed with 1200℃ heat treatment, not α-quartz phase which is commonly found and stable at room temperature. Existence of W accelerated decomposition at both low and high temperature. Fully sintered MoSi2 and (Mo1/2W1/2)Si2 specimen did not show decomposition or weight loss by oxidation, with 1 hour heat treatment at either low or high temperature. Notably, it was difficult to sinter WSi2 because of oxidation reaction at low temperature.

Effects of Alloying Elements on Sticking Occurring During Hot Rolling of Ferritic Stainless Steels (페라이트계 스테인리스강의 열간압연 시 발생하는 Sticking에 미치는 합금원소의 효과)

  • Ha, Dae Jin;Kim, Yong Jin;Lee, Jong Seog;Lee, Yong Deuk;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.593-603
    • /
    • 2008
  • In this study, effects of alloying elements on the sticking occurring during hot rolling of five kinds of ferritic STS430J1L stainless steels were investigated by analyzing high-temperature hardness and oxidation behavior of the rolled steels. Hot-rolling simulation tests were conducted by a high-temperature wear tester which could simulate actual hot rolling. The simulation test results revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation. Since the hardness continuously decreased as the test temperature increased, whereas the formation of Fe-Cr oxides in the rolled steel surface region increased, the sticking of five stainless steels was evaluated by considering both the high-temperature hardness and oxidation effects. The addition of Zr, Cu, or Si had a beneficial effect on the sticking resistance, while the Ni addition did not show any difference in the sticking. Particularly in the case of the Si addition, Si oxides formed first in the initial stage of high-temperature oxidation, worked as initiation sites for Fe-Cr oxides, accelerated the formation of Fe-Cr oxides, and thus raised the sticking resistance by about 10 times in comparison with the steel without Si content.

Spalling of the Oxide Scales Foemed on Stainless Steels During Cooling

  • Saeki, Isao;Ogama, Tetsuro;Furuichi, Ryusaburo;Kikkawa, Shinichi
    • Corrosion Science and Technology
    • /
    • v.2 no.5
    • /
    • pp.225-232
    • /
    • 2003
  • High temperature oxidation of SUS430 and SUS304 stainless steels in 16.7 kPa $O_2$ - 20.3 kPa $H_2O$ - balanced N2 atmosphere at 1273 K was studied focused on the scale spalling during cooling after an isothermal oxidation. Spalling of the oxide scale during cooling occurred only for SUS304 stainless steel. The oxide scale was composed of two layers and they detached at the interface between them. The reason for the spalling could not be explained only by thermal stresses applied to the specimen during heating and cooling. A new mechanism for scale spalling was proposed based on combination of thermal stresses and thermal shock caused by a fast Martensite transformation of substrate metal.

High Temperature Oxidation of TiAl-based XD 45 and XD47 Intermetallics (TiAl계 XD45, XD47 금속간 화합물의 고온산화거동)

  • 심웅식;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.4
    • /
    • pp.193-198
    • /
    • 2002
  • Alloys of XD45 (Ti45A12Nb2Mn-0.8vol%TiB$_2$) and XD47 (Ti47A12Nb2Mn-0.8vol%TiB$_2$) were oxidized between 800 and $1000^{\circ}C$ in air, and their oxidation characteristics were studied. The oxide scales consisted primarily of an outer $TiO_2$ layer, an intermediate $Al_2$$O_3$-rich layer, and an inner mixed layer of ($TiO_2$+$Al_2$$O_3$). Nb tended to present at the lower part of the oxide scale, whereas Mn at the upper part of the oxide scale. The Pt marker tests indicated that the outer oxide layer grew primarily by the outward diffusion of Ti and Mn, and the inner mixed layer by the inward transport of oxygen.

Shock-Tube Study of the Oxidation of Acetaldehyde at High Temperature

  • Won, Seok Jae;Ryu, Ji Cheol;Bae, Jun Hyeon;Kim, Yun Do;Gang, Jun Gil
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.487-492
    • /
    • 2000
  • The combustion characteristics of a mixture of acetaldehyde, oxygen and argon behind a reflected shock wave at temperatures ranging from 1320 to 1897 K at 100 torr were studied. The emission from the OH radical at 306.4 nm and the pressure profile behind the reflected shock were measured to monitor ignition delay time. The ignition delay times were computed from a proposed mechanism of 110 elementary reactions involving 34 species. The simulation and sensitivity analysis confirm that the main channel for oxidation of acetaldehyde at high temperature consists of the Rice-herzfeld mechanism, the decomposition and oxidation of HCO, and the reaction of H with $O_2$.

Effect of Fe on the High Temperature Oxidation of Ti-Al-Fe Alloys (Ti-Al-Fe계 합금의 고온산화거동에 미치는 Fe의 영향)

  • Yoon, Jang-Won;Hyun, Yong-Taek;Kim, Jeoung-Han;Yeom, Jong-Taek;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.357-363
    • /
    • 2011
  • In this paper, high temperature oxidation behavior of newly developed alloys, Ti-6Al-4Fe and Ti-6Al-1Fe, is examined. To understand the effect of Fe on the air oxidation behavior of the Ti-Al-Fe alloy system, thermal oxidation tests are carried out at $700^{\circ}C$ and $800^{\circ}C$ for 96 hours. Ti-6Al-4V alloy is also prepared and tested under the same conditions for comparison with the developed alloys. The oxidation resistance of the Ti-Al-Fe alloy system is superior to that of Ti-6Al-4V alloy. Ti-6Al-4V shows the worst oxidation resistance for all test conditions. This is not a result of the addition of Fe, but rather it is due to the elimination of V, which has deleterious effects on high temperature oxidation. The oxidation of the Ti-Al-Fe alloy system follows the parabolic rate law. At $700^{\circ}C$, Fe addition does not have a noticeable influence on the amount of weight gain of all specimens. However, at $800^{\circ}C$, Ti-6Al-4Fe alloy shows remarkable degradation compared to Ti-6Al-1Fe and Ti-6Al. It is discovered that the formation of $Al_2O_3$, a diffusion resistance layer, is remarkably hindered by a relative decrease of the ${\alpha}$ volume fraction. This is because Fe addition increases the volume fraction of ${\beta}$ phase within the Ti-6Al-xFe alloy system. Activities of Al, Ti, and Fe with respect to the formation of oxide layers are calculated and analyzed to explore the oxidation mechanism.

Catalytic oxidation kinetics of iron-containing carbon particles generated from diesel-sprayed hydrogen-air diffusion flame (디젤-분무 수소-공기 확산화염에서 생성된 철-함유 탄소입자의 촉매 산화반응 특성)

  • Kim, Yongho;Kim, Yong-Tae;Kim, Soo Hyung;Lee, Donggeun
    • Particle and aerosol research
    • /
    • v.4 no.2
    • /
    • pp.51-67
    • /
    • 2008
  • In this study, we devoted to kinetic measurement of the catalytic oxidation of iron-containing flame soot particles and better understanding the role of catalytic particles on carbon oxidation in particular at low temperature, targeting on autothermal regeneration of diesel particulate filter by diesel exhaust gas. Carbon-based Fe-containing particles generated by spraying ferrocene-doped diesel fuel in an oxy-hydrogen flame are tested and compared with a commercial carbon black powder for thermogravimetric analysis (TGA), secondary ion mass spectrometry (SIMS), Fourier-transform infrared spectroscopy (FTIR), Induced coupled plasma-Atomic emission spectroscopy (ICP-AES), and High-resolution transmission electron microscopy (HR-TEM). As a result, we found that a small amount of the ferrocene addition led to significant reductions in a on-set temperature and an activation energy of the carbon oxidation as well. An oxygenated surface complex forming at the particle surface could be thought as active species that would be readily consumed in particular at low temperature.

  • PDF

Structural Evolution and Electrical Properties of Highly Active Plasma Process on 4H-SiC

  • Kim, Dae-Kyoung;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.133-138
    • /
    • 2017
  • We investigated the interface defect engineering and reaction mechanism of reduced transition layer and nitride layer in the active plasma process on 4H-SiC by the plasma reaction with the rapid processing time at the room temperature. Through the combination of experiment and theoretical studies, we clearly observed that advanced active plasma process on 4H-SiC of oxidation and nitridation have improved electrical properties by the stable bond structure and decrease of the interfacial defects. In the plasma oxidation system, we showed that plasma oxide on SiC has enhanced electrical characteristics than the thermally oxidation and suppressed generation of the interface trap density. The decrease of the defect states in transition layer and stress induced leakage current (SILC) clearly showed that plasma process enhances quality of $SiO_2$ by the reduction of transition layer due to the controlled interstitial C atoms. And in another processes, the Plasma Nitridation (PN) system, we investigated the modification in bond structure in the nitride SiC surface by the rapid PN process. We observed that converted N reacted through spontaneous incorporation the SiC sub-surface, resulting in N atoms converted to C-site by the low bond energy. In particular, electrical properties exhibited that the generated trap states was suppressed with the nitrided layer. The results of active plasma oxidation and nitridation system suggest plasma processes on SiC of rapid and low temperature process, compare with the traditional gas annealing process with high temperature and long process time.

A Study on the Friction and Wear Characteristics Engine Oil with Mo-DTP and Zn-DTP (Mo-DTP와 Zn-DTP를 혼합 첨가한 엔진 오일의 마찰 마모특성에 관한 연구)

  • 김종호;강석춘;정근우;조원오
    • Tribology and Lubricants
    • /
    • v.7 no.1
    • /
    • pp.46-54
    • /
    • 1991
  • As the additives of engine oil, Mo-DTP and Zn-DTP were studied by experimental works. These additives were added to the engine oil with various ratios, which was an attempt to find out the best ratio at which the wear and friction can be reduced effectively; Mo-DTP is belived to be able to decrease the frictioh of the sliding metal, while Zn-DTP is known as a very stable additive for oxidation at high temperature in addition to the good antiwear property. This study showed that the optimum addition ratio of Mo-DTP and Zn-DTP is 3:2. This oil made it possible to slide steel with minimum wear and low friction over various lovels of load at moderate temperature. But as the oil temperature increased, the wear slid with Mo-DTP oil was increased more. The reason of this result was that Mo-DTP deteriorated the property of oil at high temperature by the higher oxidation and viscosity of Mo-DTP oil than that of Zn-DTP oil.

Tribological Characteristics of Silicon Nitride on Elevated Temperature (고온하에서 질화규소의 트라이볼로지적 특성)

  • 김대중;채영훈;김석삼
    • Tribology and Lubricants
    • /
    • v.16 no.4
    • /
    • pp.282-288
    • /
    • 2000
  • A sliding friction and wear test for silicon nitride (Si,N4) was conducted using a ball-on-disk specimen configuration. The material used in this study was HIPed silicon nitride. The tests were carried out from room temperature to 1000$^{\circ}C$ using self-mated silicon nitride couples in laboratory air. The worn surfaces were observed by SEM and the debris particles from the worn surfaces were analyzed for oxidation by XPS. The normal load was found to have a more significant influence on the friction coefficient of the silicon nitride than an elevated temperature. The specific wear rate was found to decrease along with the sliding distance. The specific wear rate at 29.4 N and 1000$^{\circ}C$ was 292 times larger than that at room temperature. The main wear mechanism from room temperature to 750$^{\circ}C$ was caused by brittle fracture whereas from 750$^{\circ}C$ to 1000$^{\circ}C$ the wear mechanism was mainly influenced by the oxidation of silicon nitride due to the increased temperature. The oxidation of silicon nitride at a high temperature was a significant factor in the wear increase.