• Title/Summary/Keyword: High-Temperature Oxidation

검색결과 1,130건 처리시간 0.039초

Microstructural characterization of accident tolerant fuel cladding with Cr-Al alloy coating layer after oxidation at 1200 ℃ in a steam environment

  • Park, Dong Jun;Jung, Yang Il;Park, Jung Hwan;Lee, Young Ho;Choi, Byoung Kwon;Kim, Hyun Gil
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2299-2305
    • /
    • 2020
  • Zr alloy specimens were coated with Cr-Al alloy to enhance their resistance to oxidation. The coated samples were oxidized at 1200 ℃ in a steam environment for 300 s and showed extremely low oxidation when compared to uncoated Zr alloy specimens. The microstructure and elemental distribution of the oxides formed on the surface of Cr-Al alloys have been investigated by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A very thin protective layer of Cr2O3 formed on the outer surface of the Cr-Al alloy, and a thin Al2O3 layer was also observed in the Cr-Al alloy matrix, near the surface. Our results suggest that these two oxide layers near the surface confers excellent oxidation resistance to the Cr-Al alloy. Even after exposure to a high temperature of 1200 ℃, inter-diffusion between the Cr-Al alloy and the Zr alloy occurred in very few regions near the interface. Analysis of the inter-diffusion layer by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) measurement confirmed its identity as Cr2Zr.

질화규소 세라믹스의 고온(~1,000 ℃) 유전상수 변화와 산화 거동의 상관관계 고찰 (Correlation between Dielectric Constant Change and Oxidation Behavior of Silicon Nitride Ceramics at Elevating Temperature up to 1,000 ℃)

  • 용석민;고석영;정욱기;신다혜;박진우;최재호
    • 한국군사과학기술학회지
    • /
    • 제25권6호
    • /
    • pp.580-585
    • /
    • 2022
  • In this study, the high-temperature dielectric constant of Si3N4 ceramics, a representative non-oxide-based radome material, was evaluated and the cause of the dielectric constant change was analyzed in relation to the oxidation behavior. The dielectric constant of Si3N4 ceramics was 7.79 at room temperature, and it linearly increased as the temperature increased, showing 8.42 at 1,000 ℃. As results of analyzing the microstructure and phase for the Si3N4 ceramics before and after heat-treatment, it was confirmed that oxidation did not occur at all or occurred only on the surface at a very insignificant level below 1,000 ℃. Based on this, it is concluded that the increase in the dielectric constant according to the temperature increase of Si3N4 ceramics is irrelevant to the oxidation behavior and is only due to the activation of charge polarization.

초고온가스로용 Alloy 617의 불순물 함유 헬륨/공기 중에서 고온부식 특성 (High Temperature Corrosion of Alloy 617 in Impure Helium and Air for Very High-Temperature Gas Reactor)

  • 정수진;이경근;김동진;김대종
    • Corrosion Science and Technology
    • /
    • 제12권2호
    • /
    • pp.102-112
    • /
    • 2013
  • A very high-temperature gas reactor (VHTR) is one of the next generation nuclear reactors owing to its safety, high energy efficiency, and proliferation-resistance. Heat is transferred from the primary helium loop to the secondary helium loop through an intermediate heat exchanger (IHX). Under VHTR environment Alloy 617 is being considered a candidate Ni-based superalloy for the IHX of a VHTR, owing to its good creep resistance, phase stability and corrosion resistance at high temperature. In this study, high-temperature corrosion tests were carried out at 850 - $950^{\circ}C$ in air and impure helium environments. Alloy 617 specimens showed a parabolic oxidation behavior for all temperatures and environments. The activation energy for oxidation was 154 kJ/mol in helium environment, and 261 kJ/mol in an air environment. The scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) results revealed that there were a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbide after corrosion test. The thickness and depths of degraded layers also showed a parabolic relationship with the time. A corrosion rate of $950^{\circ}C$ in impure helium was higher than that in an air environment, caused by difference in the outer oxide morphology.

LPPS용사법과 HVOF 용사법으로 제조된 CoNiCrAlY 코팅의 고온물성에 관한 연구 (A study on the high temperature properties of CoNiCrAlY coating fabricated by HVOF and LPPS process)

  • 강현욱;권현옥;송요승
    • 한국표면공학회지
    • /
    • 제34권2호
    • /
    • pp.161-168
    • /
    • 2001
  • A Thermal Barrier Coating (TBC) can play an important role in protecting parts from harmful environments at high temperatures such as oxidation, corrosion, and wear in order to improve the efficiency of aircraft engines by lowering the surface temperature of the turbine blade. The TBC can increase the life span of the product and improve the operating properties. Therefore, in this study the mechanical and thermal properties of the TBC such as oxidation, fatigue and shock at high temperatures were evaluated. A samples of a bond coat (CoNiCrAlY) produced by the High Velocity Oxygen Fuel (HVOF) and Low Pressure Plasma Spray (LPPS) method were used. The thickness of the HVOF coating layer was approximately $450\mu\textrm{m}$ to 500$\mu\textrm{m}$ and the hardness number of the coating layer was between 350Hv and 400Hv. The thickness of the LPPS coating was about 350$\mu\textrm{m}$ to 400$\mu\textrm{m}$ and the hardness number of the coating was about 370Hv to 420Hv. The X-ray diffraction analysis showed that CoNiCrAlY coating layer of the HVOF and LPPS was composed of the $\beta$and ${\gamma}$phase. After the high temperature oxidation test, the oxide scale with about l0$\mu\textrm{m}$ to 20$\mu\textrm{m}$ thickness appeared at the coating surface on the Al-depleted zone was observed under the oxide scale layer.

  • PDF

Fe-2%Ni 합금의 고온 산화 (High-temperature Oxidation of Fe-2%Ni Alloys)

  • 이동복;정재옥;박순용;조규철;;김민정
    • 한국표면공학회지
    • /
    • 제51권2호
    • /
    • pp.104-109
    • /
    • 2018
  • Fe-2 wt.%Ni alloys were fabricated by metal powder injection molding, and their oxidation behavior at $600-700^{\circ}C$ for 30 h in air was studied in order to find the effect of the small addition of Ni in the iron matrix on the high-temperature oxidation. Oxide scales that formed after oxidation consisted primarily of $Fe_2O_3$, where microscopic voids were scattered. Nickel was segregated initially at the scale/matrix interface, and later at the lower part of the $Fe_2O_3$ scale. At $600^{\circ}C$, Fe-2wt.%Ni alloys oxidized parabolically initially, and linearly after 15 h. At $650-700^{\circ}C$, they oxidized linearly from the initial period. Although Fe-2wt.%Ni alloys oxidized slower than pure iron, their oxidation rates were relatively fast.

Zirconala 용사된 Hastelloy X의 고온산화거동 (A Study on the high temperature oxidation behavior of zirconia plasma coatings on Haselloy X)

  • 김재철;신억균;박영규;최시경;김길무
    • 한국표면공학회지
    • /
    • 제30권4호
    • /
    • pp.285-297
    • /
    • 1997
  • Finned segment, with which are lined inner wall of the turbine combustors, are subject to severe degradation when they are exposed to a hostile environmment at elevated temperature. To protect the finned segment from this environment and to maintain good mechanical properties of components at high temperature, they are preferred to be coated. The most governing factor for the durability of coatings used in the high temperature is the microstructure of coatings; these are splat from, distibution of microcacks, size and distribution of pores, thickness of coating layer, adhesion between coating layer, and oxidation of band coating. In this study, based on the evaluation of the imported finned segment, new finned segment segment was manufactured with optimum plasma spraying parameters, and their properties were examined. Using $ZrO_2(8wt$Y_2O_3)$,/TEX> powder for ceramic coating and 67Ni-22Cr-10Al-0.5Y mixing powder for bond coating, thickness of ceramic and bond coating layer were varied in order to find optimum condition, the results showed that B2T4(bond coating : 100~250$\mu\textrm{m}$, ceramic coating : 250~300$\mu\textrm{m}$) was the best among the specimens tested. Compared to the imported finned segment, B2T4 has better bond strength, hardness, and isothermal and cyclic oxidation resistance.

  • PDF

Use of VHVl Base Oils for High Performance ATFs

  • Moon, Woo-Sik;Yang, Si-Won
    • KSTLE International Journal
    • /
    • 제2권2호
    • /
    • pp.120-126
    • /
    • 2001
  • Performance requirements for automatic transmission fluids have been changed reflecting the design changes of automatic transmissions. The major purpose of these design changes is concentrated upon improvements of both fuel economy and drivability. In order to formulate such high performance ATFs as satisfy those requirements, it is necessary to use high quality base oils like VHVI base oils and PAOs. In this study, the effect of base oils characteristics on ATF performance is investigated, mainly regarding differences in frictional characteristics with deterioration. Frictional characteristics are determined using the SAE No. 2 machine and ATFs are deteriorated under various controlled conditions. Moreover low-temperature fluidity, oxidation stability, and seal compatibility are also compared for four different ATFs. From the investigation, it was found that the use of Group III and IV base oils in ATFs gives several benefits with respect to low temperature viscosity, oxidation stability and SAE No.2 friction characteristics.

  • PDF

강기판 위에 코팅된 Ni-W의 고온산화거동 (High Temperature Oxidation Behavior of Ni-W Coatings Electrodeposited on Steel)

  • 고재황;권식철;장도연;이동복
    • 한국표면공학회지
    • /
    • 제36권6호
    • /
    • pp.430-436
    • /
    • 2003
  • The nanoocrystalline Ni-l5W(at.%) coating electrodeposited on the high carbon steel was oxidized at 700 and $800^{\circ}C$ in air, and the resultant oxidation properties were investigated using XRD, EPMA, TGA and TEM. The oxidation resistance of the coating was not so good that most of the coating was oxidized after oxidation at $800^{\circ}C$ for 5 hrs. The oxidation led to the formation of the outer, thin NiO oxide scale and the inner, porous, rather thick ($NiWO_4$+NiO) mixed layer containing a bit of $WO_2$. During oxidation, substrate elements such as Fe and Cr diffused outwardly toward the coating, according to the concentration gradient.

The Lubricant Effect of Oxidation and Wear Products of HVOF Co-alloy T800 Powder Coating

  • Cho, Tong Yul;Yoon, Jae Hong;Kim, Kil Su;Song, Ki Oh;Youn, Suk Jo;Chun, Hui Gon;Hwang, Soon Young
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.159-163
    • /
    • 2007
  • Micron size Co-alloy 800 (T800) powder is coated on the high temperature, oxidation and corrosion resistant super alloy Inconel 718 substrate by the optimal high velocity oxy-fuel (HVOF) thermal spray coating process developed by this laboratory. For the study of durability improvement of high speed spindle operating without lubricants, friction and sliding wear behaviors of the coatings are investigated both at room and at an elevated temperature of $1000^{\circ}F(538^{\circ}C)$. Friction coefficients, wear traces and wear debris of coatings are drastically reduced compared to those of non-coated surface of Inconel 718 substrate both at room temperature and at $538^{\circ}C$. Friction coefficients and wear traces of both coated and non-coated surfaces are drastically reduced at higher temperature of $538^{\circ}C$ compared with those at room temperature. At high temperature, the brittle oxides such as CoO, $Co_{3}O_{4}$, $MoO_2$ and $MoO_3$ are formed rapidly on the sliding surfaces, and the brittle oxide phases are easily attrited by reciprocating slides at high temperature through oxidation and abrasive wear mechanisms. The brittle solid oxide particles, softens, melts and partial-melts play roles as solid and liquid lubricants reducing friction coefficient and wear. These show that the coating is highly recommendable for the durability improvement coating on the machine component surfaces vulnerable to frictional heat and wear.