• Title/Summary/Keyword: High-Strength Bars

Search Result 269, Processing Time 0.025 seconds

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.

Structural Behaviour of TEC-BEAM Connection with Steel Column Under Cyclic Loading (반복하중을 받는 TEC-BEAM 철골브라켓 접합부 거동평가)

  • Ju, Young Kyu;Kim, Ji Young;Kim, Myeong Han;Jung, Kwang Ryang;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.51-58
    • /
    • 2002
  • To reduce the story height for high-rise buildings, the TEC Beam is developed as a new composite beam composed of structural tee, precast concrete, stirrup, and site-in-cast reinforced concrete slab. The preliminary test of the proposed system was performed for simple beams and it showed a good behavior. However, for the field application of the system, it is required to develope a steel moment resisting connection using steel brackets on which upper rebars of the TEC BEAM are anchored. In this paper, three types of the proposed system are experimentally investigated. The parameters of the test are as follows: (1) the spacing of transverse bars, (2) the ratio of width of rebar's layer to bracket length. Specimens were classified as semi-rigid full strength by the Eurocode 4. It could be concluded that the proposed moment resisting system shows a good structural behavior and may be applicable in the filed.

Electrical Resistivity of Natural Graphite/Polymer Composite based Bipolar Plates for Phosphoric Acid Fuel Cells by Addition of Carbon Black (카본블랙 첨가량에 따른 인산형 연료전지(PAFC) 분리판용 천연흑연-고분자복합재료의 전기비저항)

  • Kim, Hyo-Chang;Lee, Sang-Min;Nam, Gibeop;Roh, Jae-Seung
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.522-532
    • /
    • 2020
  • Conductive polymer composites with high electrical and mechanical properties are in demand for bipolar plates of phosphoric acid fuel cells (PAFC). In this study, composites based on natural graphite/fluorinated ethylene propylene (FEP) and different ratios of carbon black are mixed and hot formed into bars. The overall content of natural graphite is replaced by carbon black (0.2 wt% to 3.0 wt%). It is found that the addition of carbon black reduces electrical resistivity and density. The density of composite materials added with carbon black 3.0 wt% is 2.168 g/㎤, which is 0.017 g/㎤ less than that of non-additive composites. In-plane electrical resistivity is 7.68 μΩm and through-plane electrical resistivity is 27.66 μΩm. Compared with non-additive composites, in-plane electrical resistivity decreases by 95.7 % and through-plane decreases by 95.9 %. Also, the bending strength is about 30 % improved when carbon black is added at 2.0 wt% compared to non-additive cases. The decrease of electrical resistivity of composites is estimated to stem from the carbon black, which is a conductive material located between melted FEP and acts a path for electrons; the increasing mechanical properties are estimated to result from carbon black filling up pores in the composites.

Cooling performance test of the superconducting fault current limiter

  • Yeom, H.;Hong, Y.J.;In, S.;Ko, J.;Kim, H.B.;Park, S.J.;Kim, H.;Kim, H.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.66-70
    • /
    • 2014
  • The superconducting fault current limiter (SFCL) is an electrical power system device that detects the fault current automatically and limits the magnitude of the current below a certain safety level. The SFCL module does not have any electrical resistance below the critical temperature, which facilitates lossless power transmission in the electric power system. Once given the fault current, however, the superconducting conductor exhibits extremely high electrical resistance, and the magnitude of the current is accordingly limited to a low value. Therefore, SFCL should be maintained at a temperature below the critical temperature, which justifies the cryogenic cooling system as a mandatory component. This report is a study which reported on the cooling system for the 154 kV-class hybrid SFCL owned by Korea Electric Power Corporation (KEPCO). Using the cryocooler, the temperature of liquid nitrogen (LN2) was lowered to 71 K. The cryostat was pressurized to 5 bars to improve the dielectric strength of nitrogen and suppress nitrogen bubble foaming during operation of SFCL. The SFCL module was immersed in the liquid nitrogen of the cryostat to maintain the superconducting state. The performance test results of the key components such as cryocooler, LN2 circulation pump, cold box, and pressure builder are shown in this paper.

Behavior of GFRP reinforced decks with various reinforcement ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 거동 실험)

  • You, Young-Jun;Park, Ji-Sun;Park, Young-Hwan;Kim, Hyeong-Yeol;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.49-52
    • /
    • 2008
  • The tensile and bond performance of GFRP rebar are different from those of conventional steel reinforcement. It requires some studies on concrete members reinforced with GFRP reinforcing bars to apply it to concrete structures. GFRP has some advantages such as high specific strength, low weight, non-corrosive nature, and disadvantage of larger deflection due to the lower modulus of elasticity than that of steel. Bridge deck is a preferred structure to apply FRP rebars due to the increase of flexural capacity by arching action. This paper focuses on the behavior of concrete bridge deck reinforced with newly developed GFRP rebar. A total of three real size bridge deck specimens were made and tested. Main variable was reinforcement ratio of GFRP rebar. Static test was performed with the load of DB-24 level until failure. Test results were compared and analyzed with ultimate load, deflection behavior.

  • PDF

Safety Evaluation of Semi-Slim AU Composite Beam During Construction (세미슬림 AU 합성보의 시공 단계 안전성 평가)

  • Kim, Young-Ho;Kim, Do-Bum;Kim, Dae-Jin;Kim, Myeong-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.57-66
    • /
    • 2018
  • Recently various composite beams in which concrete is filled in the U-shaped steel plate have been developed for saving story height and reducing construction period. Due to the high flexural stiffness and strength, they are widely being used for the building with large loads and long spans. The semi-slim AU composite beam has proven to take highly improved stability compared to the existing composite beams, because it consists of the closed steel section by attaching cap-type shear connectors to the upper side of U-shaped steel plate. In this study the finite element analyses were performed to evaluate the safety of the AU composite beam with unconsolidated concrete which were sustained through the closed steel section during the construction phase. The analyses were performed on the two types of cross section applied to the fabrication of AU composite beams, and the results were compared to the those of 2-point bending tests. In addition, the flexural performance according to the space of intermittent cap-type shear connectors and the location of reinforcing steel bars for compression was comparatively investigated. Through the results of analytical studies, it is preferable to adopt the yield moment of AU composite beam for evaluating the safety in the construction phase, and to limit the space of intermittent shear connectors to 400 mm or less for the construction load.

Structural Performance of a New Truss Deckplate System with UHPC Infilled Top Chords in Construction Stage (UHPC 충전형 상현재를 활용한 트러스 데크플레이트 시스템 시공단계 구조성능 평가)

  • Son, Hong-Jun;Kim, Young-Ho;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.137-144
    • /
    • 2020
  • In this study, we propose a new truss deckplate system, which does not require temporary floor supports during construction, with ultra-high-performance concrete (UHPC) infilled top bars. The increased stiffness and strength of the proposed system were well retained as compared to those of the existing truss deckplate systems, thereby resulting in the reduction of maximum deflection at the span center. Four-point bending tests were performed on five specimens with a net span of 4.6 m to evaluate the structural performance of proposed system in the construction stage. In addition, the load-deflection curve was plotted for each specimen, and the effects of test parameters were analyzed. Further, a rigorous nonlinear three-dimensional finite element analysis was performed, and its results were compared with the test results. From the results, it was observed that the test specimens of the proposed system exhibited superior performance as compared to those of the existing one and also satisfied the serviceability requirement during construction provided by the Korea Building Code 2016.

The use of artificial neural networks in predicting ASR of concrete containing nano-silica

  • Tabatabaei, Ramin;Sanjaria, Hamid Reza;Shamsadini, Mohsen
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.739-748
    • /
    • 2014
  • In this article, by using experimental studies and artificial neural network has been tried to investigate the use of nano-silica as concrete admixture to reduce alkali-silica reaction. If there are reactive aggregates and alkali of cement with enough moisture in concrete, a gel will be formed. Then with high reactivity between alkali of cement and existence of silica in aggregates, this gel will expand by absorption of water, and causes expansive pressure and cracks be formed. At the time passes, this gel will reduce both durability and strength of the concrete. By reducing the size of silicate to nano, specific surface area of particles and number of atoms on the surface will be increased, which causes more pozzolanic activity of them. Nano-silica can react with calcium hydroxide ($Ca(OH)_2$) and produces C-S-H gel. In this study, accelerated mortar bar specimens according to ASTM C 1260 and ASTM C 1567, with different mix proportions were prepared using aggregates of Kerman, such as: none admixture and plasticizer, different proportions of nano-silica separately. By opening the moulds after 24 hour and curing in water at $80^{\circ}C$ for 24 hour, then curing in (1N NaOH) at $80^{\circ}C$ for 14 days, length expansion of mortar bars were measured and compared. It was noted that, the lowest length expansion of a specimens shows the best proportion of admixture based on alkali-silica reactivity. Then, prediction of alkali-silica reaction of concrete has been investigated by using artificial neural network. In this study the backpropagation network has been used and compared with different algorithms to train network. Finally, the best amount of nano silica for adding to mix proportion, also the best algorithm and number of neurons in hidden layer of artificial neural network have been offered.

Effect of High Temperature on Mechanical Properties of Confined Concrete with Lateral Reinforcement (고온을 받은 횡방향 철근 구속 콘크리트의 역학적 특성 연구)

  • Choi, Kwang Ho;Lee, Joong Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.131-139
    • /
    • 2012
  • The lateral reinforcements of concrete such as hoops and spiral bars are known to confine concrete to compensate the strength loss due to fire by reducing explosive spalling and improving the capacity of ductility. In this context, a study was conducted to investigate the residual mechanical properties of confined and unconfined concrete($f_{ck}$=60MPa) after a single thermal cycle at 300, 600, $800^{\circ}C$. The main parameters required to establish the stress-strain relationship are the peak stress, the elastic modulus, and the strain at peak stress. The knowledge of the residual mechanical properties of concrete is necessary whenever the thermally damaged structure is required to bear a significant share of the loads, even after a severe thermal accident. Based on the results obtained in this study, the residual stress of confined concrete under thermal damage is higher according to the level of confinement and the larger strain made it to have better ductility. The decreasing ratio of elastic modulus from the relationship of stress and strain was also smaller than that of unconfined concrete.

Service and Ultimate Load Behavior of Bridge Deck Reinforced with GFRP Rebars (GFRP 보강근으로 보강된 교량 바닥판의 성능과 사용성에 관한 실험연구)

  • Yu, Young Jun;Park, Young Hwan;Park, Ji Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.719-727
    • /
    • 2008
  • The tensile and bond performance of GFRP rebar are different from those of conventional steel reinforcement. It requires some studies on concrete members reinforced with GFRP reinforcing bars to apply it to concrete structures. GFRP has some advantages such as high specific strength, low weight, non-corrosive nature, and disadvantage of larger deflection due to the lower modulus of elasticity than that of steel. Bridge deck is a preferred structure to apply FRP rebars due to the increase of flexural capacity by arching action. This paper focuses on the behavior of concrete bridge deck reinforced with newly developed GFRP rebars. A total of three real size bridge deck specimens were made and tested. Main variables are the type of reinforcing bar and reinforcement ratio. Static test was performed with the load of DB-24 level until failure. Test results were compared and analyzed with ultimate load, deflection behavior, crack pattern and width.