• Title/Summary/Keyword: High-Speed Railway Vehicle

Search Result 409, Processing Time 0.026 seconds

A Study on Technology Development of High Capacity PWM Converter for Electric Vehicle (전기철도용 대용량 PWM 컨버터 기술개발에 관한 연구)

  • Han, Young-Jae;Jo, Jeong-Min;Bae, Chang-Han;Lee, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1729-1734
    • /
    • 2018
  • Recently, interest in environmentally friendly transportation systems has been increasing, and study on railway systems has been aggressively conducted. Therefore, lots of studies have been done in railway advanced countries to improve performance of PWM converter. The research on the PWM converter for railway vehicle was mainly carried out on the converter mounted on railway vehicle such as the high-speed railway and metropolitan railway. In also, a lot of study has been carried out to improve converter performance installed in the ground. The high-capacity transform used in this paper converted from AC 22.9kV to AC 590V. The converter changed from AC 590V to DC 950V. In general, in the case of rectifier, the DC power supply system has a negative impact on inverter control characteristics because it can not avoid the pulsating component. In this study, it was performed current control for high-capacity converter using Matlab Simulink. The PWM converter is normally performed through the voltage and current at starting mode, powering mode, and braking mode. In the light-load test and the on-line test, we have studied for the PWM converter characteristics. Using this research, we have founded that the converter has excellent performance.

A Study on the Wear Characteristics of Wheel Profile for High Speed Rolling-stock (고속철도 차륜답면의 마모 특성에 관한 연구)

  • Hur Hyun-Moo;You Won-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.477-482
    • /
    • 2005
  • Through a year's commercial operation, Korea High Speed Railway has solved defectives from several breakages at the beginning and is going into the stage of stable operation. Among issues, wheel wear becomes a matter of primary concerns in view of vehicle's stability and maintenance. It was understood as above that wear status has been improved in the test by which railway system including vehicles and tracks was stabilized during a year's commercial operation, comparing to that with excessive wear in the trial operation prior to opening to the public. To make out wheel's wear status and characteristics of equivalent conicity at present when the service has been introduced a year ago and the average cumulative mileage of vehicles reach almost 500,000km, wheel's wear types were analyzed with the current vehicles in service.

An analysis study on earth pressure trends during construction of Gyungbu High Speed Railway using Concrete Track (콘크리트궤도 적용 경부고속철도의 시공 중 토압 경향 분석 연구)

  • Kim, Ki-Hwan;Kim, Dae-Sang;Na, Sung-Hoon;Shin, Ki-Dae
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.671-679
    • /
    • 2010
  • The construction of concrete track for the first time in Korea gives lots of meanings to civil engineering in various aspects. Settlement level needs to be kept minimal for the safety of the track. Concrete track has different structural characteristics comparing to conventional ballast track, so load distribution in concrete track is also different. Since it is the first time to build concrete track, there are very few experience and data available on the subject. Therefore it is important to evaluate how much load is transferred to the ground due to the running vehicle in concrete track and to determine the optimal thickness of layers. In this research, 9 individual earth pressure cells were installed at OOOk930 site in 2nd stage of Kyungbu high speed railway during under construction. The in-situ pressure data were measured at each layers during pump-car and locomotive were moving on the high speed railway surface.

  • PDF

Dynamic Behavior of High-Speed Railway Bridges (고속철도 교량의 동적거동)

  • 김성재;안예준;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.103-110
    • /
    • 1999
  • Dynamic responses of steel composite bridges for the Korean high-speed railway are analyzed by a modal analysis. The bridge is modeled as a simply supported beam structure and a vehicle of TGV-K is modeled using a moving load assumption. When the train is moving on a bridge, its deck shows resonance phenomenon at a critical velocity. However, it is observed that the dynamic response is greatly reduced at a special range of the span length. The results show that the reduction effect should be considered ill designing the railway bridges. A parametric study of tile dynamic response is performed for different span lengths, and specific train speeds train should be considered in designing the high speed railway bridge are suggested.

  • PDF

Nonlinear Analysis of Rubber Bellows for the High Speed Railway Vehicle (고속철도차량 갱웨이 벨로우즈의 비선형 해석)

  • Kang, Gil-Hyun;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3631-3637
    • /
    • 2013
  • Gangway bellows in this study is the double wrinkled neoprene rubber component to accept various deviations between the carriage end parts of the articulated type high speed railway vehicle(HSRV). The fatigue failure of the bellows has a harmful effect on the riding comfort for the passengers with the increase of noise and ringing in the ears due to air-tightness failure during pass through a long tunnel. In this study, to assure the safety of gangway bellows of the HSRV, non-linear analysis of the gangway bellows considering triaxial angular displacement(rolling /yawing/pitching) between the carriage end parts are performed. The non-linear properties of the rubber are determined by uniaxial tension and equi-biaxial tension test. Moreover, from the results of non-linear analysis, the effects of the angular displacements and frictional coefficients are evaluated.

A Single-Phase PWM Converter with fast response (빠른 응답성을 갖는 단상 PWM Converter)

  • 배기훈;기상우;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.322-327
    • /
    • 1999
  • In most railway vehicle applications, a single phase AC/DC converter is used greatly and is essential equipment for Korea High Speed Train. A diode bridge rectifier and a phase-controlled thyristor bridge rectifier generate harmonics in power system. Nowadays, power factor and harmonics become major issue in electrical equipment for railway vehicle. Many researchers have been trying to improve the power factor and ac-side harmonics. Therefore the PWM converter is used to operate at unity Power factor and to reduce ac-side current harmonics. This paper describes the circuit for AC/DC PWM converter of Korea High Speed Train and proposes control algorithm to realize the sinusolidal input current waveform and the effective unity power factor. The validity of the proposed control method is verified through the experimental result.

  • PDF

A Experimental Study on Train Speed and Wave Propagation Speed of Contact Wire according to the Speed-up (속도향상에 따른 열차속도와 전차선 파동전파속도에 대한 실험적 연구)

  • Lee, Kiwon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1820-1823
    • /
    • 2013
  • An overhead catenary system is the one of the main subjects for increasing speed in electric railway. When a vehicle increases the speed over 350km/h, vibrations and wave propagation reflections occur severely. Therefore, the system suitable for the speed are needed. A wave propagation speed of contact wire is the main criteria to determine the tension for the system. Therefore, a train speed is restricted below 70% of wave propagation speed of it in European railway code. In this study, we measured a strain and uplift of contact wire while HEMU-430X tain is operated for the speed-up trial test in Kyungbu high-speed railway. The measured strain and uplift are analyzed with wave propagation speed according to the speed-up. The more a train speed reaches to a propagation speed, the more measured strain is high. Through the study, an experimental approach is performed about the code which a train speed is restricted below 70% of wave propagation speed of it.

Fracture Mechanics Characteristics of Wheel and Axle For High Speed Train (고속철도용 차륜과 차축의 파괴역학적 특성)

  • Kwon, Seok-Jin;Seo, Jung-Won;Lee, Dong-Hyung;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.28-34
    • /
    • 2010
  • Railway wheel and axle is the most critical components in railway system. A wheel and axle failure can cause a derailment with its attendant loss of life and property. The service conditions of railway vehicles have become severe in recent years due to a general increase in operating speeds. Therefore, more precise evaluate of wheelset strength and safety has been desired. Fracture mechanics characteristics such as dynamic fracture toughness, fatigue threshold and charpy impact energy with respect to the tread, plate, disc hole of wheel and the surface of press fitted axle are evaluated. This paper describes the difference of fracture toughness, fatigue crack growth and fatigue threshold at the locations of wheel and axle. The results show that the dynamic fracture toughness, $K_{ID}$, is obviously lower than static fracture toughness, $K_{IC}$ and the fracture mechanics characteristics are difference to the location of wheel tread and hole.

A Study on the Contact Force between Catenary and Pantograph in Duplicate KTX-II Operation

  • Kang, Seung-Wook;Kim, Sang-Ahm;Kim, In-Chol
    • International Journal of Railway
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Electric railway system driving the electric cars using power from catenary has been secured by performance of stable tracking between pantograph and catenary. The performance of the power collecting of pantograph is the one of the most important skills for high-speed train speed. The first Korea high-speed train(KTX) is 20 cars in one train set. In the meantime, collecting capability of single pantograph collector at one train set was confirmed through evaluation of the performance and the stability test. However, more research is needed to build for a stable collecting capability of coupled Korea's KTX-II High-speed system which is developed in Korea. In this study, actual vehicle test of coupled KTXSanchon was made to analyzing the data presented by the dynamic nature of catenary and pantograph, and the interface characteristics.

Impact Test for Measurement of the Carbody Bending Modes of Railway Vehicle (철도차량 차체 굽힘모드 측정을 위한 충격시험)

  • Shin, Bum-Sik;Choi, Yeon-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.423-428
    • /
    • 2012
  • As the speed of high speed train increases, the prediction of ride comfort becomes important. The exciting frequencies due to rail irregularity in high-speed train closes to the second and third natural frequencies of the carbody. The dynamic characteristics of railway vehicles should be checked by modal analysis numerically and experimentally. In this study the bending test for railway vehicle is reviewed and the impact test is suggested to find the natural frequencies and the mode shapes of the carbody. The validity of the impact test is checked with the test for a sample plate which reflects the aspect ratio of the original carbody. The bending test by the impact and the displacement methods of JIS E7105 for a prototype carbody were done in the field and compared. The results show that the impact test can find more accurate natural frequencies and the mode shapes of the carbody than those of the displacement method.