• Title/Summary/Keyword: High-Speed Motor Drive

Search Result 528, Processing Time 0.023 seconds

Development of High Power BLDC Servo System for Control of Large Scale Mechanical System (대형 기계 구조물의 제어를 위한 대용량 BLDC 서보 시스템의 개발)

  • 정세교;김경화;송정민;김대준;김창걸;김원수;윤명중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.982-986
    • /
    • 1996
  • The development of a high power BLDC servo system for a control of the large scale mechanical system is presented. Using DSP TMS320C30, a control unit which is suitable for motor drive system, is developed. Also, based on the developed control unit, BLDC drive system for the speed control is constructed. The algorithms of the vector control, current control, and speed control is implemented using TMS320C30 Software Development Tool. The developed high power BLDC motor drive system is applied to the large scale mechanical system and its feasibility is verified through the experimental results.

  • PDF

Vector Control of Sensorless BLDC Motor (위치및 속도 검출기 없는 BLDC 전동기의 벡터제어)

  • Lee, H.L.;Kwon, Y.A.;Kim, C.U.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1023-1025
    • /
    • 1993
  • BLDC motor is widely used in industrial drive applications due to high efficiency, high power and easy maintenance. However position and speed sensors generally used in BLDC motor increase drive cost, and reduce application range. This study describes sensorless speed control using instantaneous voltage-current equation, and presents the results of computer simulation.

  • PDF

High Efficiency Tracking Drive in DC Motor by Field Winding Switching Method (계자권선 절환에 의한 직류전동기의 고효율 추종 운전)

  • Yoon, Ki-Jeong;Kim, Kwang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.493-496
    • /
    • 1997
  • This paper constructed the experimental system which is able to drive in series or separately excited by switching of the field winding, using a DC motor and obtained the characteristics of efficiency with speed and torque of each motor's type through the experiment. From this result controlled drive which is able to series DCM or separately excited DCM in the optimal point of efficiency as finding the types of motor having maximum efficiency with torque and speed. By performing high efficiency tracking drive, it is expected that energy consumption of power source with limited energy density would be reduced, and so utility efficiency would be improved.

  • PDF

Simple Neuro-Controllers for Field-Oriented Induction Motor Servo Drives

  • Fayez F. M.;Sousy, E-I;M. M. Salem
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.28-38
    • /
    • 2004
  • In this paper, the position control of a detuned indirect field oriented control (IFOC) induction motor drive is studied. A proposed Simple-Neuro-Controllers (SNCs) are designed and analyzed to achieve high-dynamic performance both in the position command tracking and load regulation characteristics for robotic applications. The proposed SNCs are trained on-line based on the back propagation algorithm with a modified error function. Four SNCs are developed for position, speed and d-q axes stator currents respectively. Also, a synchronous proportional plus integral-derivative (PI-D) two-degree-of-freedom (2DOF) position controller and PI-D speed controller are designed for an ideal IFOC induction motor drive with the desired dynamic response. The performance of the proposed SNCs and synchronous PI-D 2DOF position controllers for detuned field oriented induction motor servo drive is investigated. Simulation results show that the proposed SNCs controllers provide high-performance dynamic characteristics which are robust with regard to motor parameter variations and external load disturbance. Furthermore, comparing the SNC position controller with the synchronous PI-D 2DOF position controller demonstrates the superiority of the proposed SNCs controllers due to attain a robust control performance for IFOC induction motor servo drive system.

Design of 65kw Class Switched Reluctance Motor for HEV Drive (하이브리드 자동차 구동용 65kW급 SR Motor의 설계)

  • Moon Jae-Won;Ahn Jin-Woo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.358-363
    • /
    • 2005
  • This paper presents the reasonable design parameters of a switched reluctance motor to drive a hybrid electric vehicle by using the equivalent magnetic circuit method. The designed motor can be redesigned by using finite element analysis as a variation of the parameter for the purpose of improving performance. This paper shows that a flat-topped current of a phase can be made from a change of the lamination stack length for high average torque and a lower torque ripple. The change of current falling time as a variation of turn-off angle was shown by finite element analysis. The core loss and copper loss were described. The torque of the redesigned motor is suitable for low and high speed ranges to drive a HEV. which is verified by the speed-torque curve.

A Study on the Speed Control of BLDC Motor Using the Feedforward Compensation (전향보상을 이용한 BLDC 모터의 속도제어에 관한 연구)

  • Park K.H.;Kim T.S.;Kim K.H.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.663-666
    • /
    • 2003
  • This paper presents a speed controller method based on the disturbance torque observer of high performance brushless DC (BLDC) motor drives. In case of the speed control of robot arms and tracking applications with lower stiffness, we cannot design the speed controller gain to be very large from tile viewpoint of the system stability. Thus, the feedforward compensator using disturbance torque observer was proposed. This method can improve the speed characteristic without increasing the speed controller gain. The enhanced speed control performance can be achieved and the speed response against the disturbance torque can be Improved for high-performance BLDC motor drive systems in which the bandwidth of tile speed controller cannot be made large enough. Consequently, speed control for high-performance BLDC motor drives become improved. The simulation results for BLDC motor drive systems confirm the validity of the proposed method.

  • PDF

Study of Speed-biased Overcurrent Relay for High-Inertia Drive Motor (고관성부하용 전동기보호를 위한 속도감지형 과전류계전기 연구)

  • Lim, Jin-Ok;Cho, Sung-Don;Kang, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.506-508
    • /
    • 1995
  • The relay protection engineers are sometimes faced with the difficulties in full protection of high-inertia drive motors during acceleration period. The problem results from lower permitted locked rotor time of the motor compared with motor starting time. Even though the various types of protection relay and other device (Speed switch, Distance relay) are used, the full protections against abnormal starting conditions may not be available. So, the development of a new speed-biased overcurrent relay is suggested in this paper. This paper also presents that speed-biased overcurrent relay can fully protect the high-inertia motor during abnormal starting condition by computer simulation.

  • PDF

High Performance Control of Induction Motor Drive using Multi Adaptive Fuzzy Controller (다중 적응 퍼지제어기를 이용한 유도전동기 드라이브의 고성능 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.59-68
    • /
    • 2009
  • The field oriented control of induction motors is widely used in high performance applications. However, detuning caused by parameter disturbance still limits the performance of these drives. In order to accomplish variable speed operation, conventional PI-like controllers are commonly used. These controllers provide limited good performance over a wide range of operation, even under ideal field oriented conditions. This paper is proposed high performance control of induction motor drive using multi adaptive fuzzy controller. This controller has been performed for speed control with fuzzy adaptation mechanism (FAM)-PI, current control with model reference adaptive fuzzy control(MFC) and estimation of speed using ANN. The proposed control algorithm is applied to induction motor drive system using FAM-PI, MFC and ANN controller. The performance of proposed controller is evaluated by analysis for various operating conditions using parameters of induction motor drive. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.

Characteristic Test of High Force Linear Motor Feed Unit for High Speed Machine Tool (고속가공기용 고추력 리니어모터 이송계의 특성 평가)

  • 송창규;황주호;박천홍;이후상;정재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.977-981
    • /
    • 2000
  • Direct drive linear motors have large potential for use as high speed machine tool feed units since they can increase machining rates and improve servo accuracy by eliminating gear related machining problems. So, in this paper, characteristic of 2-axis linear motor feed unit are studied and control gain are adjusted considering positioning, velocity, acceleration and static stiffness. We confirm linear motor feed unit are affected value of control gain sensitively, because drive directly. From the experiment, this feed unit has l${\mu}{\textrm}{m}$ micro step resolution, 5.7${\mu}{\textrm}{m}$ positioning accuracy and under 60${\mu}{\textrm}{m}$ circularity.

  • PDF

Four-Quadrant Operation of a Single-Switch-based Switched Reluctance Drive (단일 스위치 기반의 4상한 운전 SRM 드라이브)

  • Ha, Keun-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.338-343
    • /
    • 2010
  • Low cost motor drives are being sought for high volume energy efficient home appliances. Key to the realization of such low cost motor drives is to reduce the power electronic converter in terms of its components, particularly the active devices, finding the motor with least complexity for manufacturing and a controller that could extract the desired performance from the machine and converter combination. These and other factors such as self-starting, speed control over a wide range and most of all the crowning aspect of a four quadrant operation with bare minimum number of controllable switch (or switches) remain as formidable challenges for low cost motor drive realization. In this paper, a four quadrant switched reluctance motor (SRM) drive with only one controllable switch is realized by using a two-phase machine. The theory and operation of the proposed four-quadrant SRM drive with the proposed control algorithm for its realization are described. The motor drive is modeled, simulated and analyzed to verify its feasibility for self-starting, speed control and for four quadrant operation and the simulation results are presented. Experimental results confirm the validity of the proposed control algorithm for four quadrant control of the SRM drive. The focus of the paper is mainly directed toward the control algorithm for realizing the four-quadrant operation of the two-phase SRM drive with a single controllable switch converter.