• Title/Summary/Keyword: High-Speed Heat-up

Search Result 73, Processing Time 0.025 seconds

A Study on a New Hybrid Induction Heating System for Laser Printer (Laser Printer용 Hybrid 유도가열 시스템 특성에 관한 연구)

  • Chae, Young-Min;Kim, Jin-Ha;Kwon, Joong-Gi;Han, Sang-Yong;Sung, Hwan-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.466-468
    • /
    • 2005
  • Recently, the demand for the development of high quality and high speed laser printer and efficient power utilizations are required. Among complicate electro-mechanic devices in laser printer, the toner fusing unit consumes above 90[%] of all electrical energy needed for printing devices. Therefore, the development of more effective energy-saving toner fusing process becomes a significant task of much great demand. Generally, there are several way to implement fusing unit, among them this paper present a new hybrid induction heating method. The proposed induction heating method enables to increase coupling coefficient between heating coil and heat roller also to Increase total energy transfer efficiency. Therefore the proposed IH inverter system provide very fast W.U.T.(Warm UP Time), also high efficiency. Through experimental result, the proposed control system is verified.

  • PDF

A Study for In-situ Application of High Strength Antiwashout Underwater Concrete (고장도용 수중불분리성 콘크리트의 현장적용을 위한 연구)

  • 문한영;송용규;이승훈;정재홍
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.336-345
    • /
    • 2001
  • The construction of underwater structures has been increased, but underwater concrete hassome problems of quality deterioration and contamination around in-situ of civil and architecture; therefore, new materials and methods for them are demanded. In this paper in-situ application of underwater antiwashout concrete which is manufactured for trio purpose of not only decreasing suspended solids and the heat of hydration but also increasing long term strength was studied. In the case of mock-up test(Ⅰ), when underwater antiwashout concrete, whose slump flow was 58 cm, was placed in the mock-up test at a speed of 24 ㎥/hr, it took about a minute to flow to the side wall, and the surface was maintained at horizontal level. In this case, compressive strength of the core specimens in each section was higher than the standard design compressive strength of 240 kgf/㎠. In the case of mock-up test(II), pH value and suspended solids of high strength underwater antiwashout concrete were 10.0∼11.0 and 51 mg/ℓ at 30 minutes later, initial and final setting time were about 30, 37 hr, and the slump flow of that was 53$\pm$2 cm. In the placement at a speed of 27 ㎥/hr, there was no large difference in flowing velocity, with or without reinforcement and flowing slope was maintained at horizontal level. In this case, compressive strength and elastic modulus of the core specimens somewhat decreased as flowing distance was far : however, those of central area showed the highest value.

Effect of Vane/Blade Relative Position on Heat/Mass Transfer Characteristics on the Tip and Shroud for Stationary Turbine Blade (고정된 터빈 블레이드의 베인에 대한 상대위치 변화가 끝단면 및 슈라우드의 열/물질전달 특성에 미치는 영향)

  • Rhee Dong-Ho;Cho Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.446-456
    • /
    • 2006
  • The effect of relative position of the stationary turbine blade for the fixed vane has been investigated on blade tip and shroud heat transfer. The local mass transfer coefficients were measured on the tip and shroud fur the blade fixed at six different positions within a pitch. A low speed stationary annular cascade with a single turbine stage was used. The chord length of the tested blade is 150 mm and the mean tip clearance of the blade having flat tip is 2.5% of the blade chord. A naphthalene sublimation technique was used for the detailed mass transfer measurements on the tip and the shroud. The inlet flow Reynolds number based on chord length and incoming flow velocity is fixed to $1.5{\times}10^5$. The results show that the incoming flow condition and heat transfer characteristics significantly change when the relative position of the blade changes. On the tip, the size of high heat/mass transfer region along the pressure side varies in the axial direction and the difference of heat transfer coefficient is up to 40% in the upstream region of the tip because the position of flow reattachment changes. On shroud, the effect of tip leakage vortex on the shroud as well as tip gap entering flow changes as the blade position changes. Thus, significantly different heat transfer patterns are observed with various blade positions and the periodic variation of heat transfer is expected with the blade rotation.

The Thermal Characterization of Chip Size Packages

  • Park, Sang-Wook;Kim, Sang-Ha;Hong, Joon-Ki;Kim, Deok-Hoon
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.09a
    • /
    • pp.121-145
    • /
    • 2001
  • Chip Size Packages (CSP) are now widely used in high speed DRAM. The major driving farce of CSP development is its superior electrical performance than that of conventional package. However, the power dissipation of high speed DRAM like DDR or RAMBUS DRAM chip reaches up to near 2W. This fact makes the thermal management methods in DRAM package be more carefully considered. In this study, the thermal performances of 3 type CSPs named $\mu-BGA$^{TM}$$ $UltraCSP^{TM}$ and OmegaCSP$^{TM}$ were measured under the JEDEC specifications and their thermal characteristics were of a simulation model utilizing CFD and FEM code. The results show that there is a good agreement between the simulation and measurement within Max. 10% of $\circledM_{ja}$. And they show the wafer level CSPs have a superior thermal performance than that of $\mu-BGA.$ Especially the analysis results show that the thermal performance of wafer level CSPs are excellent fur modulo level in real operational mode without any heat sink.

  • PDF

Preparation and Physical Properties of Biodegradable High Performance PLA Fiber using Process Parameters (용융방사에 의한 생분해성 고강도 PLA 섬유 제조 공정 상 주요 공정 변수에 관한 연구)

  • Jeung, Woo Chang;Kim, Sam Soo;Lee, Sang Oh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.197-206
    • /
    • 2022
  • The purpose of this study was to confirm the optimal spinning conditions for PLA (Polylactic acid) as a fiber forming polymer. According to the melt spinning test results of PLA, the optimal spinning temperature was 258℃. However, it needs to note that relatively high pack pressure was required for spinning at 258℃. At an elevated temperature, 262℃, mono filament was broken easily due to hydrolysis of PLA at a higher temperature. In case of fiber strength, it was confirmed that the draw ratios of 2.7 to 3.3 were optimal for maximum strength of melt spun PLA. Above the draw ratio, 3.3, the strength of the PLA fibers was lowered. It was presumed that cleavage of the PLA polymer chain over maximum elongation. The heat setting temperature of GR (Godet roller) showed that the maximum strength of the PLA fibers was revealed around 100℃. The degree of crystallinity and the strength of the PLA fibers were decreased above 100℃. The optimal take-up speed (Spinning speed) was around 4,000m/min. Thermal analysis of PLA showed 170℃ and 57℃ as Tm (melting temperature) and Tg (glass transition temperature), respectively.

Development of Hybrid Induction Heating System for Laser Printer

  • Chae Young-Min;Kwon Joong-Gi;Han Sang-Yong;Sung Hwan-Ho
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.178-185
    • /
    • 2006
  • Recently, the demand for the development of high quality and high-speed laser printers and efficient power utilization has required. Among complicated electro-mechanic devices in laser printers, the toner-fusing unit consumes above 90[%] of all electrical energy needed for printing devices. Therefore, the development of a more effective energy-saving toner fusing process becomes a significant task in great demand. Generally, there are several ways to implement a fusing unit. Among them this paper presents a new induction heating method. The proposed induction heating method enables the increase of coupling coefficient between heating coil and heat roller which also increases total energy transfer efficiency. Therefore, the proposed IH (Induction Heating) inverter system provides very fast W.U.T. (Warm UP Time) as well as higher efficiency. Through experimental results, the proposed control system is verified.

The effect of heat exchanger type for exhaust heat recovery system on diesel engine performance (배기 열 회수 열교환기 형식이 디젤 엔진 성능에 미치는 영향)

  • Kim, Cheol-Jeong;Choi, Byung-Chul;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.639-647
    • /
    • 2014
  • Due to global warming and depletion of fossil fuels, technologies reducing $CO_2$ emission and increasing fuel efficiency simultaneously are required. An exhaust gas heat recovery system is a technology to satisfy both issues. This study analyses three types of heat exchanger installed on an exhaust pipe. In case of plate type heat exchanger, back pressure rapidly increased and maximum cylinder pressure reduced in high speed and maximum load, and back pressure increased over twice and specific fuel consumption also increased up to 2% which were the highest increasing rate. In case of fin tube type, the amounts of exhaust emissions and specific fuel consumption rate were less than the other two types. The effect of shell and tube was in the middle. Making a decision by only the effect on engine performance, a fin tube type is the best for exhaust heat recovery systems.

The Individual Heat-recovery ventilation system of Residential Buildings (주거용 건물의 개별 환기시스템 필요성에 관한 연구)

  • Shin, U-Cheul;Lee, Wang-Je;Yoon, Jong-Ho;Baek, Nam-Choon
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.99-104
    • /
    • 2014
  • Recently supply of low energy house is increasing which can enhance energy efficiency and indoor environment comfort. Low energy house have to secure air tightness as well as thermal performance so house become high airtightness and inevitably need heat recovery ventilator to enhance indoor air quality. However, most of current ventilation systems are one-click, controlling the entire space so it causes increasing of heating load and fan power which makes it hard to save energy. Thus, Individual Control system is required which can achieve both enhancing indoor air quality and decreasing heating load and electric fan power. Thereby, in this study, we analyzed the correlation between ventilation and fan power through mock-up experiment and measured ventilation load under individual control system. As a result, under the condition of $24^{\circ}C$ of indoor temperature for 6 month(November to April) in Daejeon, ventilation load by fan speed was $10.9{\sim}19.6kWh/m^2{\cdot}a$ when operated 24 hours and $7.6{\sim}13.7kWh/m^2{\cdot}a$ when operated 12 hours in night time. In addition, it is possible to reduce at most 60% of ventilation load under the individual control system; measured ventilation load was $7.4kWh/m^2{\cdot}a$ when operated 24 hours, and $5.5kWh/m^2{\cdot}$ when operated 12 hours in night time.

Effects of Composition of Metallic Friction Materials on Tribological Characteristics on Sintered Metallic Brake Pads and Low-Alloy Heat-Resistance Steel for Trains (철도차량용 금속계 소결마찰재의 조성에 따른 트라이볼로지 특성)

  • Yang, Yong Joon;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.330-336
    • /
    • 2014
  • Sintered metallic brake pads and low alloy heat resistance steel disks are applied to mechanical brake systems in high energy moving machines that are associated with recently developed 200km/h trains. This has led to the speed-up of conventional urban rapid transit. In this study, we use a lab-scale dynamometer to investigate the effects of the composition of friction materials on the tribological characteristics of sintered metallic brake pads and low alloy heat resistance steel under dry sliding conditions. We conduct test under a continuous pressure of 5.5 MPa at various speeds. To determine the optimal composition of friction materials for 200 km/h train, we test and the evaluate frictional characteristics such as friction coefficients, friction stability, wear rate, and the temperature of friction material, which depend on the relative composition of the Cu-Sn and Fe components. The results clearly demonstrate that the average friction coefficient is lower for all speed conditions, when a large quantity of iron power is added. The specimen of 25 wt% iron powder that was added decreased the wear of the friction materials and the roughness of the disc surface. However when 35 wt% iron powder was added, the disc roughness and the wear rate of friction materials increased By increasing the amount of iron powder, the surface roughness, and temperature of the friction materials increased, so the average friction coefficients decreased. An oxidation layer of $Fe_2O_3$ was formed on both friction surfaces.

Effect of low H2 content in natural gas on the Combustion Characteristics of Gas Turbine (천연가스 내 미량의 수소함량이 가스터빈의 연소특성에 미치는 영향)

  • Lee, Min Chul;Park, Seik;Kim, Sungchul;Yoon, Jisoo;Joo, Sungpeel;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.109-110
    • /
    • 2013
  • This paper describes gas turbine combustion characteristics of synthetic natural gas which contains a small amount hydrogen content. By conducting ambient pressure high temperature combustion test at gas turbine relevant combustor geometry, the combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, nozzle and dump plane, and flame structure from high speed OH chemiluminescence images were investigated when changing hydrogen content from zero to 5%. From the results, qualitative and quantitative relationships are derived between key aspects of combustion performance, notably NOx/CO emission and combustion instability. Natural gas containing hydrogen up to 5% does not show significant difference in view of all combustion characteristics except combustion instability. Only up to 1% hydrogen addition could not change the pressure fluctuation and phase gas between fluctuations of pressure and heat release. From the results, it can be concluded that synthetic national gas which contains 1% of hydrogen can be guaranteed for the stable and reliable operation of natural gas firing gas turbine.

  • PDF