• Title/Summary/Keyword: High-Speed Camera

Search Result 927, Processing Time 0.025 seconds

Effect of pre-post injection timing of diesel fuel for naval vessel on the combustion and emission characteristics in an optically-accessible single cylinder diesel engine (단기통 디젤엔진에서 함정용 디젤유의 전·후 분사시기가 연소 및 배출가스 특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.868-876
    • /
    • 2014
  • The objective of this study is focused on the analyzing combustion, carbon monoxide and hydrocarbon emission characteristics of marine diesel oil, utilized for naval propulsion engine, with varying pre-post injection timing of an optically accessible single cylinder engine. And also the combustion process is analyzed by means of a high speed camera visualization. On the result of retarding pre-injection timing toward main injection timing, the mean effective pressure and maximum pressure of combustion chamber are increased; however, the heat release rate is decreased. Furthermore, the emission rates of carbon monoxide and hydrocarbon are reduced in this case. In hence, when a post-injection timing is advanced, the mean effective pressure and maximum pressure are increased, because the combustion has been performed under the high temperature and high pressurized environment during main injection time, and the emission rates of carbon monoxide and hydrocarbon are increased. From the experimental results, it considered that retarding of pre-injection timing affects to shorten the ignition delay of main injection clearly, and to raise the flame intensity comparing to the advanced state. The ignition delay during post-injection is not appeared at any post-injection time, but the flame intensity has been weakened gradually according to the retarding of post-injection timing.

Hybrid (refrctive/diffractive) lens design for the ultra-compact camera module (초소형 영상 전송 모듈용 DOE(Diffractive optical element)렌즈의 설계 및 평가)

  • Lee, Hwan-Seon;Rim, Cheon-Seog;Jo, jae-Heung;Chang, Soo;Lim, Hyun-Kyu
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.240-249
    • /
    • 2001
  • A high speed ultra-compact lens with a diffractive optical element (DOE) is designed, which can be applied to mobile communication devices such as IMT2000, PDA, notebook computer, etc. The designed hybrid lens has sufficiently high performance of less than f/2.2, compact size of 3.3 mm (1st surf. to image), and wide field angle of more than 30 deg. compared with the specifications of a single lens. By proper choice of the aspheric and DOE surface which has very large negative dispersion, we can correct chromatic and high order aberrations through the optimization technique. From Seidel third order aberration theory and Sweatt modeling, the initial data and surface configurations, that is, the combination condition of the DOE and the aspherical surface are obtained. However, due to the consideration of diffraction efficiency of a DOE, we can choose only four cases as the optimization input, and present the best solution after evaluating and comparing those four cases. On the other hand, we also report dramatic improvement in optical performance by inserting another refractive lens (so-called, field flattener), that keeps the refractive power of an original DOE lens and makes the petzval sum zero in the original DOE lens system. ystem.

  • PDF

Velocity Distribution Measurements in Mach 2.0 Supersonic Nozzle using Two-Color PIV Method (Two Color PIV 기법을 이용한 마하 2.0 초음속 노즐의 속도분포 측정)

  • 안규복;임성규;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.18-25
    • /
    • 2000
  • A two-color particle image velocimetry (PIV) has been developed for measuring two dimensional velocity flowfields and applied to a Mach 2.0 supersonic nozzle. This technique is similar to a single-color PIV technique except that two different color laser beams are used to solve the directional ambiguity problem. A green-color laser sheet (532 nm: 2nd harmonic beam of YAG laser) and a red-color laser sheet (619 nm: output beam from YAG pumped Dye laser using Rhodamine 640) are employed to illuminate the seeded particles. A high resolution (3060${\times}$2036) digital color CCD camera is used to record the particle positions. This system eliminates the photographic-film processing time and subsequent digitization time as well as the complexities associated with conventional image shifting techniques for solving directional ambiguity problem. The two-color PIV also has the advantage that velocity distributions in high speed flowfields can be measured simply and accurately by varying the time interval between two different laser beams due to its high signal-to-noise ratio and thereby less requirement of panicle pair numbers for a velocity vector in one interrogation spot. The velocity distribution in the Mach 2.0 supersonic nozzle has been measured and the over-expanded shock cell structure can be predicted by the strain rate field. These results are compared and analyzed with the schlieren photograph for the velocity distributions and shock location.

  • PDF

The Comparative Study on Travel Behavior and Traffic Accident Characteristics on a Community Road - With Focus on Seoul Metropolitan City (생활도로에서의 교통행태와 교통사고특성에 관한 연구 - 서울특별시를 중심으로)

  • Lim, Joonbeom;Lee, Sooil;Choi, Jongchul;Joo, Sungkab
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.97-104
    • /
    • 2016
  • In Korea, the number of crash accident victims per 100,000 population is three times higher than the average of OECD. In particular, 60% of it occurs on the community road. Thus, this study intends to analyze the causes of such accidents through a pedestrian and vehicle traffic survey. The purpose is to establish practical safety enhancement measures for community roads. In recent years, lots of changes have occurred in the pedestrian environment. A traffic survey shows that 65% of pedestrians walk on the right and 17% of people use smart-phones while walking. An eye camera experiment shows that the operation load of drivers on the community roads is more than 4 times higher than those in urban roads. According to a speed survey, 62% of vehicles drive at 30km/h or above. The characteristics of accidents on community roads are as follows. First, the ratio of accidents on the edge of the road is 2.3 times as high as those on other roads. Second, when people walk on the right, the ratio of accidents is 2.5 times as high as that of walking on the left. Third, it becomes more dangerous when people cross the road from the right to the left. The majority of accidents is caused by unsafe driving (84.4%). When a vehicle makes a left turn, the likelihood of accidents is 2.3 times as high as those caused by a right turn. The ratio of accidents caused by vehicles going backwards is 14% among all accidents. In community roads, the focus of drivers should be at least 4 times higher than those on urban roads. Thus, walking in the opposite direction of vehicles and careless behaviors are highly likely lead to accidents.

A Study on the Applicability of a Cumulative Rebound Angle for the Assessment of Compressive Strength of Construction Materials Nondestructively (건설재료의 비파괴 압축강도산정을 위한 누적 반발각의 적용성에 관한 연구)

  • Son, Moorak;Jang, Byungsik;Kim, Moojun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.39-45
    • /
    • 2017
  • This paper is to grasp the applicability of a cumulative rebound angle measured from the rebound action generated after impacting an object for the assessment of compressive strength of construction materials nondestructively and to propose the test results. For this study, an impact device was devised and used for impacting an object by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Five types of construction materials, which are soil cement, cement paste, wood (pine tree), and two types of rock (shale and granite), were tested and both peak rebound angle and cumulative rebound angle were measured for each material by using a high-speed camera. The measured angles were compared with the directly measured compressive strength for each material. The comparison showed that for materials such as cement and rock the cumulative rebound angle, which reflects energy dissipation, rather than the peak rebound angle is more appropriate indicator for assessing the compressive strength of a material, but for a construction material such as wood which has a high toughness the magnitude of rebound is not an indicator to assess the compressive strength of a material.

Size measurement of electrosprayed droplets using shadowgraph visualization method (Shadowgraph 가시화 기법을 활용한 정전분무액적의 크기 측정)

  • Oh, Min-Jeong;Kim, Sung-Hyun;Lee, Myong-Hwa
    • Particle and aerosol research
    • /
    • v.13 no.4
    • /
    • pp.151-158
    • /
    • 2017
  • Electrostatic precipitator is widely used to remove particulate matters in indoor air and industrial flue gas due to low pressure drop and high collection efficiency. However, it has a low collection efficiency for the submicrometer sized particles. Electrospraying is a potential method to increase the particle charging efficiency, which results in increased collection efficiency. Although particle charging efficiency is highly dependent upon droplet size, the effective measuring method of the droplets is still uncertain. Tap water was electrosprayed in this study, and the images of electrosprayed droplets were taken with a high speed camera coupled with several visualization methods in order to measure the droplets size. The droplet size distribution was determined by an image processing with an image-J program. As a result, a droplet measured by a laser visualization, had a half size of that by a Xenon light visualization. In addition, the experimentally measured droplet sizes were a good agreement with the predicted values suggested by $Fern{\acute{a}}ndez$ de la Mora and Loscertales(1994).

A Study on the transition of Explosion to Eire of LPG and Its' Prevention (LP가스 폭발 후 화재 전이 현상 및 전이 방지에 관한 연구)

  • 오규형;이성은
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.20-26
    • /
    • 2004
  • The purpose of this study is to investigate the transition mechanism and prevention mechanism of gas explosion to fire. Transition phenomena of explosion to fire of LPG in the explosion vessel of its size of TEX>$100 cm {\times} 60 cm {\times} 45 cm$ was visualized using the high speed video camera and the mechanism was analysed from the videograph. Newspaper size of $30cm {\times} 20cm$ was used for combustible sample in this experiments and LPG-air mixture was ignited by 10 ㎸ electric spark. Experimental parameter was gas concentration, size of vent area and position of combustible solid. Size of vent area were varied as $10cm {\times} 9cm, 13cm {\times} 10cm, 27cm {\times} 20cm, 40cm {\times} 27cm$, and the position of combustible was varied in 4 point. Carbon dioxide was used to study the prevention mechanism of explosion to fire transition of LPG. Based on this experiment we can find that transition possibility of explosion to fire on solid combustible from explosion is depends on concentration of LPG-air mixture and the exposure time of solid combustibles in high temperature atmosphere of flame and burnt gas. And cooling or inerting of the atmosphere after explosion can be prevent the transition of explosion to fire on solid combustibles from gas explosion.

The Effects of Corneal Eccentricity and Shape on Toric Soft Lens Rotation by Change of Postures (이심률 및 각막형상이 자세변화에 의한 토릭소프트렌즈의 회전에 미치는 영향)

  • Kim, So Ra;Hahn, Shin Woong;Song, Ji Soo;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.449-456
    • /
    • 2013
  • Purpose: The present study aimed to investigate the effects of corneal eccentricity and shape on the rotational pattern of toric soft lens by the postural change of lens wearers. Methods: The corneal eccentricity of 41 eyes (aged 20s) having -1.0 D with-the-rule corneal astigmatism (WRCA) was measured, and then toric soft lenses were fitted with the amount of total astigmatism. In lying and straight postures, the rotation of toric soft lenses was recorded by a camera attached to slitlamp and analyzed. Results: Most toric soft lens designed with accelerated stabilization rotated to the temporal direction, which was the lying position direction, regardless of corneal eccentricity, and some lenses rotated to the nasal direction for high corneal eccentricity and corneal type of asymmetric bowtie. There was no correlation between the amount of rotation and corneal eccentricity right after of contact lens wearing in straight and lying posture, however, the amount of rotation was the greater for the cornea with the higher eccentricity after the subjects laying down for some period. The speed of lens rotation started to decrease after the subjects laying down, but the speed was not different according to corneal eccentricity difference. The amount of lens rotation for symmetric and asymmetric bowtie-typed corneas increased more than it for oval-typed cornea, and it was same even with time elapsing. The speed of lens rotation in lying posture was the slowest in asymmetric bowtie-typed cornea compared with other corneal types. Conclusions: From the present study, it was revealed that the rotational pattern of toric soft lens was affected by corneal eccentricity and corneal shape when the wearer's posture changed. Thus, it should be considered for the development of the fitting guideline and the design of toric soft lens.

Measurement of facial soft tissues thickness using 3D computed tomographic images (3차원 전산화단층찰영 영상을 이용한 얼굴 연조직 두께 계측)

  • Jeong Ho-Gul;Kim Kee-Deog;Han Seung-Ho;Shin Dong-Won;Hu Kyung-Seok;Lee Jae-Bum;Park Hyok;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.36 no.1
    • /
    • pp.49-54
    • /
    • 2006
  • Purpose : To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. Materials and Methods : One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. Results : There were no statistically significant differences between the direct measurements and those using the 3D images (p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. Conclusion : The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissues thickness more easily in forensic science and anthropology.

  • PDF

A study on the estimation of bubble size distribution using an acoustic inversion method (음향 역산법을 이용한 기포의 크기 분포 추정 연구)

  • Park, Cheolsoo;Jeong, So Won;Kim, Gun Do;Moon, Ilsung;Yim, Geuntae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.151-162
    • /
    • 2020
  • This paper presents an acoustic inversion method for estimating the bubble size distribution. The estimation error of the attenuation coefficient represented by a Fredholm integral equation of the first kind is defined as an objective function, and an optimal solution is found by applying the Levenberg-Marquardt (LM) method. In order to validate the effectiveness of the inversion method, numerical simulations using two types of bubble distribution are performed. In addition, a series of experiments are carried out in a water tank (1.0 m × 0.54 m × 0.6 m), using bubbles generated by three different generators. Images of the distributed bubbles are obtained by a high-speed camera, and the insertion losses of the bubble layer are measured using a source and a hydrophone. The image is post-processed to glance a distribution characteristics of each bubble generator. Finally, the size distribution of bubbles is estimated by applying the inversion method to the measured insertion loss. From the inversion results, it was observed that the number of bubbles increases exponentially as the bubble size decreases, and then increases again after the local peak at 70 ㎛ - 120 ㎛.