• 제목/요약/키워드: High-Power Applications

검색결과 2,133건 처리시간 0.029초

A 4W GaAs Power Amplifier MMIC for Ku-band Satellite Communication Applications

  • Ryu, Keun-Kwan;Ahn, Ki-Burm;Kim, Sung-Chan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권4호
    • /
    • pp.501-505
    • /
    • 2015
  • In this paper, we demonstrated a 4W power amplifier monolithic microwave integrated circuit (MMIC) for Ku-band satellite communication applications. The used device technology relies on $0.25{\mu}m$ GaAs pseudomorphic high electron mobility transistor (PHEMT) process. The 4W power amplifier MMIC has linear gain of over 30 dB and saturated output power of over 36.1 dBm in the frequency range of 13.75 GHz ~ 14.5 GHz. Power added efficiency (PAE) is over 30 %.

A Compact C-Band 50 W AlGaN/GaN High-Power MMIC Amplifier for Radar Applications

  • Jeong, Jin-Cheol;Jang, Dong-Pil;Han, Byoung-Gon;Yom, In-Bok
    • ETRI Journal
    • /
    • 제36권3호
    • /
    • pp.498-501
    • /
    • 2014
  • A C-band 50 W high-power microwave monolithic integrated circuit amplifier for use in a phased-array radar system was designed and fabricated using commercial $0.25{\mu}m$ AlGaN/GaN technology. This two-stage amplifier can achieve a saturated output power of 50 W with higher than 35% power-added efficiency and 22 dB small-signal gain over a frequency range of 5.5 GHz to 6.2 GHz. With a compact $14.82mm^2$ chip area, an output power density of $3.2W/mm^2$ is demonstrated.

Test and simulation of High-Tc superconducting power charging system for solar energy application

  • Jeon, Haeryong;Park, Young Gun;Lee, Jeyull;Yoon, Yong Soo;Chung, Yoon Do;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권3호
    • /
    • pp.18-22
    • /
    • 2015
  • This paper deals with high-Tc superconducting (HTS) power charging system with GdBCO magnet, photo-voltaic (PV) controller, and solar panels to charge solar energy. When combining the HTS magnet and the solar energy charging system, additional power source is not required therefore it is possible to obtain high power efficiency. Since there is no resistance in superconducting magnet carrying DC transport current the energy losses caused by joule heating can be reduced. In this paper, the charging characteristics of HTS power charging system was simulated by using PSIM. The charging current of HTS superconducting power charging system is measured and compared with the simulation results. Using the simulation of HTS power charging system, it can be applied to the solar energy applications.

Zero Voltage Switching Boost H-Bridge AC Power Converter for Induction Heating Cooker

  • Kwon, Soon-Kurl;Saha, Bishwajit
    • 조명전기설비학회논문지
    • /
    • 제21권4호
    • /
    • pp.19-27
    • /
    • 2007
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost H-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switch mode equivalent circuits and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft-switching(ZVS) operation ranges, and the power dissipation as compared with those of the conventional type high frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation(PWM) and pulse density modulation(PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

고속 . 저전력 CMOS 아날로그-디지탈 변환기 설계 (A Design of CMOS Analog-Digital Converter for High-Speed . Low-power Applications)

  • 이성대;홍국태;정강민
    • 한국정보처리학회논문지
    • /
    • 제2권1호
    • /
    • pp.66-74
    • /
    • 1995
  • 이 논문에서는 고속 저전력 분야에 적용하기 위한 8비트, 15MHz A/D 변환기 설계 에 관해 기술한다. 2단 플래시 방식인 서브레인징 구조 A/D 변환기에서 칩 면적을 줄 이기 위해 저항의 수를 감소시킨 전압분할 회로를 설계하였다. 비교기는 80 dB의 이득, 50 MHz의 대역폭, 오프셋 전압이 0.5mV이고, 전압분할 회로의 최대오차는 1mV이다. 설계된 A/D변환기는 +5/-5V 공급 전압에 대해 전력소비가 150mW, 지연시간이 65ns 이다. A/D 변환기는 N-well공정을 이용하여 설계하고, 제작하였다. 제안된 변환기는 고속, 저전력, 소형 단일 칩 아날로그-디지탈 혼합 시스템 응용에 적합하다. 시뮬레이 션은 PSPICE를 이용하여 수행하였고, 1차 가공된 칩을 데스트 하였다.

  • PDF

칼만필터 학습 신경회로망을 이용한 고속 유도전동기의 센서리스 제어 (Sensorless Vector of High Speed Motor Drives based on Neural Network Controllers using Kalman Filter Learning Algorithm)

  • 이병순;김윤호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.518-521
    • /
    • 1999
  • This paper describes high speed squirrel cage induction motor drives without speed sensors using neural network based on Kalman filter Learning. High speed motors are receiving inverasing attentions in various applications, because of advantages of high speed, small size and light weight with same power level. Larning rate by Kalman filtering is time varying, convergence time fast, effect of initial weight between neurons is small.

  • PDF

동기 스위치 제어를 통한 영전압 동작 고효율 능동 클램프 포워드 컨버터 (High Efficiency Active Clamp Forward Converter with Synchronous Switch Controlled ZVS Operation)

  • 이성세;최성욱;문건우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.266-268
    • /
    • 2005
  • A new synchronous switch controlled transient current build-up zero voltage switching (TCB-ZVS) forward converter is proposed. The proposed converter is suitable for the low-voltage and high-current applications. The features of the proposed converter are low conduction loss of magnetizing current, no additional circuit for the ZVS operation, high efficiency, high power density and low EMI noise throughout all load conditions.

  • PDF

Design, Implementation and Testing of HF transformers for Satellite EPS Applications

  • Zahran, Mohamed
    • Journal of Power Electronics
    • /
    • 제8권3호
    • /
    • pp.217-227
    • /
    • 2008
  • The electric power subsystems (EPS) of most remote sensing satellites consist of a solar array as a source of energy, a storage battery, a power management and control (PMC) unit and a charge equalization unit (CEU) for the storage battery. The PMC and CEU use high frequency transformers in their power modules. This paper presents a design, implementation and testing results of a high frequency transformer for the EPS of satellite applications. Two approaches are used in the design process of the transformer based on the pre-determined transformer specifications. The transformer is designed based on an ETD 29 ferrite core. The implemented transformer consists of one center-tapped primary coil with eleven center-tapped secondary coils. The offline calculation results and measured values of R, L for transformer coils are convergence. A test circuit for measuring the transformer parameters like voltage, current and B-H hysteresis was implemented and applied. The test results confirm that the voltage waveforms of both primary and secondary coils were as desired. No overlapping occurred between the control signal and the transformer, which was not saturated during testing even during a short circuit test of the secondary channels. The dynamic B-H loop characteristics of the used transformer cores were measured. The sample test results are given in this paper.

An Isolated Soft-Switching Bidirectional Buck-Boost Inverter for Fuel Cell Applications

  • Zhang, Lianghua;Yang, Xu;Chen, Wenjie;Yao, Xiaofeng
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.235-244
    • /
    • 2010
  • This paper presents a new isolated soft-switching bidirectional buck-boost inverter for fuel cell applications. The buck-boost inverter combines an isolated DC-DC converter with a conventional inverter to implement buck-boost DC-DC and DC-AC conversion. The main switches achieve zero voltage switching and zero current switching by using a novel synchronous switching SVPWM and the volume of the transformer in the forward and fly-back mode is also minimized. This inverter is suitable for wide input voltage applications due to its high efficiency under all conditions. An active clamping circuit reduces the switch's spike voltage and regenerates the energy stored in the leakage inductance of the transformer; therefore, the overall efficiency is improved. This paper presents the operating principle, a theoretical analysis and design guidelines. Simulation and experimental results have validated the characteristics of the buck-boost inverter.

저전력 분야 응용을 위한 32nm 금속 게이트 전극 MOSFET 소자의 게이트 workfunction 의 최적화 (Gate Workfunction Optimization of a 32 nm Metal Gate MOSFET for Low Power Applications)

  • 오용호;김영민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.1974-1976
    • /
    • 2005
  • The feasibility of a midgap metal gate is investigated for 32nm MOSFET low power applications. The midgap metal gate MOSFET is found to deliver a driving current as high as a bandedge gate one for the low power applications if a proper retrograde channel is used. An adequate design of the retrograde channel is essential to achieve the performance requirement given in ITRS roadmap. In addition, a process simulation is run using halo implants and thermal processes to evaluate the feasibility of the necessary retrograde profile in manufacturing environments. From the thermal budget point of view, the bandedge metal gate MOSFET is more vulnerable to the following thermal process than the midgap metal gate MOSFET since it requires a steeper retrograde doping profile. Based on the results, a guideline for the gate workfunction and the channel profile in the 32 nm MOSFET is proposed.

  • PDF