• Title/Summary/Keyword: High-Gain Antenna

Search Result 404, Processing Time 0.029 seconds

Study on Broadband HTS Antenna Array for Satellite Communication (위성통신용 광대역 고온초전도 배열 안테나에 관한 연구)

  • 정동철;윤창훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.770-775
    • /
    • 2004
  • Although $High-T_c $superconducting HTS antennas have high efficiency and high gain, narrow bandwidth due to the high Q is the major limitation for application of satellite communication and mobile communication. Defining bandwidth as the frequency range over which standing wave ratio (SWR) is 2:1 or less, HTS antenna bandwidths are typically less than 1 %. Thus considerable effort has been focused on developing HTS antennas for broadband operation. In this work the HTS antenna array, using the bipin antenna which consisted of two triangle-radiation patches, was designed and fabricated using a ${YBa}_2{Cu}_3{O}_7x (YBCO)$ superconducting thin film on a MgO substrate for broadband operation. Also gold antennas with the same dimension as our HTS antennas were fabricated on the MgO substrate for the comparison. Experimental results for both antennas were reported in terms of radiation patterns, return losses, bandwidths and other various characteristics. The center frequency of HTS antennas was 20.28 GHz and the bandwidth obtained was significant 10 %.

Capacity and Secrecy Rate Analysis of a Frequency-Domain Equal-Gain-Combining TR Scheme for Distributed Antenna Systems in Multi-User Multi-Path Fading Channels (다중 사용자 다중 경로 페이딩 채널에서 분산 안테나 시스템을 위한 주파수 영역 Equal-Gain-Combining TR 기법의 Capacity와 Secrecy Rate 분석)

  • Kim, Myoung-Seok;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.47-53
    • /
    • 2012
  • Time-reversal (TR) precoding focuses the energy of the effective channel in time and improves receive performance of a single tap receiver. Frequency-domain equal-gain-combining (FD-EGC) TR scheme, which works in linear block precoding fashion, has better temporal focusing performance than the traditional TR. Also, the FD-EGC improves receive performance of minimum mean square error receiver with distributed antenna systems (DAS). The detailed receive performance of the FD-EGC was analyzed in our previous work. In this paper, we focused on capacity analysis of the FD-EGC in DAS. We derived a scaling law which shows how the use of multiple antenna can increase the capacity of the FD-EGC precoding compared with that of no precoding. In addition, we analyze the secrecy rate of the FD-EGC which shows how high-rate messages can be transmitted towards an intended user without being decoded by the other users from the view point of information theoretic security.

A Study on Bandwidth and Gain Enhancement of Series-fed Dipole Pair Antenna (직렬 급전 다이폴 쌍 안테나의 대역폭 및 이득 향상에 관한 연구)

  • Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.59-60
    • /
    • 2017
  • In this paper, the bandwidth and gain enhancement of a series-fed dipole pair antenna (SDPA) using a modified balun., a director, and two parasitic patches is studied. The proposed SDPA consists of two strip dipoles with different lengths, a ground reflector, which are connected through a coplanar strip line, a director, and two parasitic patches. The modified balun is used to increase the bandwidth, whereas the director and two parasitic patches are appended to the SDPA to enhance the gain in the middle and high frequency band. A prototype of the proposed SDPA is fabricated on an FR4 substrate, and the experimental results show that the antenna has a frequency band of 1.56-3.10 GHz for a VSWR < 2, and measured gain maintains over 7 dBi in the frequency range of 1.55-3.00 GHz.

  • PDF

A CPW-fed Small Monopole Antenna for 5.1~5.8 GHz WLAN (5.1~5.8 GHz 무선랜용 CPW 급전 소형 모노폴 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1659-1665
    • /
    • 2019
  • In this paper, a novel design of a compact printed monopole antenna for wireless local area network (WLAN) applications is investigated. The radiator with a patch of different line width and step-shaped ground planes is used to reduce the antenna size. The size of the antenna is 16 × 17 × 1 ㎣ and is fabricated with a photolithography technique. The simulated and measured results agree well. The resonant frequency of the investigated antenna is about 5.2 GHz and can cover an impedance bandwidth of 1 GHz for the measurement result. In addition, we presented the measured radiation pattern, presented the gain and efficiency measured in the required WLAN 5 GHz frequency band (5.15-5.825 GHz), and confirmed that it can be used as a 5 GHz band WLAN antenna. The investigated antenna has a small size, light weight, low cost, omni-directional radiation pattern, high gain, and high efficiency.

A Study on Improved Isolation of Indoor Repeating Antenna using Metamaterial Absorber for WCDMA System

  • Kim, Hyoungjun;Moon, Yong;Seo, Chulhun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.850-855
    • /
    • 2013
  • This paper proposes a novel design for a compact, high-isolation WCDMA indoor repeater antenna. The proposed antenna consists of a patch antenna and metamaterial absorber. The required WCDMA bandwidth is obtained by utilizing the coupling between the main and the parasitic patches. In addition, high isolation is achieved using the metamaterial absorber, which has an absorption of about 98% at 2.1 GHz. Overall, the proposed antenna has a gain of over 7 dBi, a Voltage Standing Wave Ratio (VSWR) of less than 2, more than 85 dB of isolation between the service and donor antennas over the WCDMA band and a total volume of the proposed antenna only $70mm{\times}70mm{\times}43.8mm$.

Coaxial Feed Wideband CP antenna for RFID Applications

  • Park, Kyu-Dae;Kim, Hwan-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.391-395
    • /
    • 2008
  • Wideband terminal and base station is required to serve not only existing 1st and 2nd generation mobile communication systems but also 3rd generation systems. In this paper, we present a feasibility study on coaxial feed compact wideband antenna for UHF RFID reader application. The original antenna was designed for partial discharge detection sensor in high voltage diagnostic system. However, we modified the original prototype to achieve shifted down resonant frequency for wideband wireless communication applications. The experimental result shows good return loss characteristics and radiation patterns except for the total gain at each resonant frequency. The maximum measured gain was 2.45 dBi$\sim$3.18 dBi at 910MHz.

Fan-Beam Microstrip Array Antenna for X-B and Radar

  • Park, Jung-Ryul;Kim, Gue-Chol
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.483-486
    • /
    • 2011
  • In this study, a fan-beam microstrip array antenna for an X-band radar was designed and fabricated using a novel technique. A microstrip array structure was used to obtain a high-gain and narrow horizontal beam-width. The feeding point is located at the center of the antenna because of its $360^{\circ}$ rotational characteristic. The measured results indicate a gain of 23dBi, and a horizontal and vertical beamwidth of $3.57^{\circ}$, $26.12^{\circ}$, respectively. The proposed antenna performed adequately and managed to meet the specifications.

Single Feed Compact Wideband Antenna for Wireless Communication Applications

  • Park, Noh-Joon;Kang, Young-Jin
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.164-168
    • /
    • 2008
  • Wideband terminal and base station is required to serve not only existing 1st and 2nd generation mobile communication systems but also 3rd generation systems. In this paper, we presents a feasibility study on single feed compact wideband antenna for wireless communication applications including GSM (890-960 MHz), GPS (1575 MHz), DCS (1710-1880 MHz), PCS (1880-1990 MHz), UMTS (1900-2200 MHz), ISM (2400-2480 MHz), IMT2000 and satellite DMB bands. The original antenna was designed for partial discharge detection sensor in high voltage diagnostic system. However, we modified the original prototype to achieve shifted down resonant frequency for wideband wireless communication applications. The experimental result shows good return loss characteristics and radiation patterns except for the total gain at each resonant frequency. The maximum measured gain was 2.45 dBi${\sim}$3.18 dBi at 1710 MHz${\sim}$1880 MHz.

Degradation Analysis of User Terminal EIRP and G/T due to Station-Keeping Variation of Stratospheric Platform

  • Ku, Bon-Jun;Ahn, Do-Seob;Baek, Dong-Cheol;Park, Kwang-Ryang;Lee, Seong-Pal
    • ETRI Journal
    • /
    • v.22 no.1
    • /
    • pp.12-19
    • /
    • 2000
  • Wireless communication systems using airship have been proposed in worldwide. The airship will be located at the stratosphere about $20{\sim}23\;km$ above the sea level. The position of airship will vary within the station keeping range with time due to the drag of the wind in the stratosphere. When the earth station antenna has a high gain without the tracking function, the antenna performance may be degraded by a small variation of the airship. This means that variation of airship location could result in serious degradation of the system performance. In this paper, degradation in earth station's Equivalent Isotropic Radiated Power (EIRP) and Gain to noise Temperature ratio (G/T) due to the stratospheric platform movements has been derived by calculating the deviation angle of the main beam directions between the earth station and the platform antenna. In this case, the antenna of the earth station has been assumed circular and/or patch array antennas.

  • PDF

Design and manufacture of Bow-Tie antenna for wireless LAN (무선 LAN용 Bow-Tie안테나의 설계 및 제작)

  • Kim, Jin;Park, Kyoung-Soo;Lee, Hee-Bock;Lim, Young-Hwan;Ko, Young-Ho
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.341-344
    • /
    • 2000
  • There are many researches to increase bandwidth of the microstrip patch antenna for wireless LAN. In spite of broad bandwidth, Bow-Tie microstrip patch antenna, broadband microstrip patch antenna, has disadvantages that are low gain and big size. In this paper, stacked Bow-Tie microstrip patch antenna for wireless LAN is designed in 5.725~5.825GHz band. This antenna has characteristics that are broadband bandwidth, high gain and small size compared with microstrip patch antenna. In simulated results, the return loss is -34.2dB at 5.78GHz and bandwidth is 11.345% for VSWR is 2:1 and 7.75% for VSWR is 1.5:1. In measured results, the return loss is -38-45dB at 5.78GHz and bandwidth is 13% for VSWR is 2:1 and 5.6% for VSWR is 1.5:1.

  • PDF