Browse > Article
http://dx.doi.org/10.5370/JEET.2013.8.4.850

A Study on Improved Isolation of Indoor Repeating Antenna using Metamaterial Absorber for WCDMA System  

Kim, Hyoungjun (Dept. of Electronic Engineering, Soongsil University)
Moon, Yong (Dept. of Electronic Engineering, Soongsil University)
Seo, Chulhun (Dept. of Electronic Engineering, Soongsil University)
Publication Information
Journal of Electrical Engineering and Technology / v.8, no.4, 2013 , pp. 850-855 More about this Journal
Abstract
This paper proposes a novel design for a compact, high-isolation WCDMA indoor repeater antenna. The proposed antenna consists of a patch antenna and metamaterial absorber. The required WCDMA bandwidth is obtained by utilizing the coupling between the main and the parasitic patches. In addition, high isolation is achieved using the metamaterial absorber, which has an absorption of about 98% at 2.1 GHz. Overall, the proposed antenna has a gain of over 7 dBi, a Voltage Standing Wave Ratio (VSWR) of less than 2, more than 85 dB of isolation between the service and donor antennas over the WCDMA band and a total volume of the proposed antenna only $70mm{\times}70mm{\times}43.8mm$.
Keywords
Absorber; Antenna; Isolation enhancement; Metamaterial; WCDMA indoor repeater;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Q. Gao, Y. Yin, D. B. Yan, and N. C. Yuan, "Application of metamaterials to ultra-thin radar-absorbing material design," Electronics Letters, Vol. 41, No. 17, pp. 936-937, 2005.   DOI   ScienceOn
2 C. Y. Chiu, C. H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, pp. 1732-1738, 2011.
3 D. Ahn, J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, A design of the lowpass filter using the novel microstrip defected ground structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 1, pp. 86-93, 2001.   DOI   ScienceOn
4 Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "A perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.   DOI   ScienceOn
5 Wang, J., S. Qu, Z. Xu, Z. Fu, H. Ma, Y. Yang, X. Wu, and M. Hao, "Three-dimensional metamaterial microwave absorber composed of coplanar magnetic and electric resonators," Progress In Electromagnetics Research Letters, Vol. 7, pp. 15-24, 2009.   DOI
6 D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterial," Physical Review E, Vol. 71, No. 3, 2005.
7 Slingsby W. T., Nesic D., and Mcgeehan J. P., "Antenna isolation measurements for on-frequency radio repeaters," IEEE Int. Conference Antennas Propagation, pp. 239-243, 1995.
8 Maeyama T., and Inoue T., "Development of Cellular Repeater System with Radio Echo Suppresser," Electronics and Communications, Vol. 89, pp. 32-41, 2006.
9 Mohd Marzuki, A. S., Abd Rahim, A. R., Mohmd, B., Khalil, K., Naemat, A., and Tee, A., "Antenna Isolation Considerations in WCDMA Repeater Depolyment," International RF and Microwave Conference Proceedings, pp. 347-350, 2006.
10 Zhu, F. G., Xu, J. D., and Xu, Q., "Reduction of mutual coupling between closely-packed antenna elements using defected ground structure," Electronics Letters, pp. 601-602, 2009.
11 Sievenpiper , D., Zhang, L., Jimenez Broas, R. F., Alexopolous, N. G., and Yablonovitch, E., "Highimpedance electro-magnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, pp. 2059-2074, 1999.   DOI   ScienceOn
12 N. Michishita, H. Arai and Y. Kimura, "Mutual coupling characteristics of choke loaded patch array antenna," IEICE Trans. Commun., Vol. E88-B, No. 1, pp. 411-415, 2005.   DOI
13 Sung-Joo Kim, Frances J. Harackiewicz, Myun-Joo Park, Taekyun Kim, Woojae Jung, Jeongkwan Lee, and Byungje Lee, "Isolation Enhancement Between Two Closely Mounted Antennas for Indoor Repeater System," Microwave and Optical Technology Letters, Vol. 53, No. 3, pp. 697-700, 2011.   DOI   ScienceOn
14 Y.-Q. Li, Y.-Q. Fu, and N.-C. Yuan, "Characteristics estimation for high-impedance surfaces based ultrathin radar absorber," Microwave and Optical Technology Letters, Vol. 51, No. 7, pp. 1775-1778, 2009.   DOI   ScienceOn
15 Xi, S., H. Chen, B.-I. Wu, and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on S-ring resonators," Progress In Electromagnetics Research, Vol. 84, pp. 279-287, 2008.   DOI
16 Ramprecht, J., M. Norgren, and D. Sjoberg, "Scattering from a thin magnetic layer with a periodic lateral magnetization: Application to electromagnetic absorbers," Progress In Electromagnet ics Research, Vol. 83, pp. 199-224, 2008.   DOI
17 Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial for directive emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, pp. 953-962, 2009.   DOI   ScienceOn