• 제목/요약/키워드: High-Efficiency Turning

검색결과 52건 처리시간 0.023초

"Inclined Keel" 을 이용한 컨테이너선의 추진효율 향상 (Efficient Propulsion of a Container Ship Using the Inclined Keel Concept)

  • 서광철;;김희정;전호환;강대수
    • 대한조선학회논문집
    • /
    • 제44권4호
    • /
    • pp.379-388
    • /
    • 2007
  • Ever increasing fuel prices and environmental concerns are forcing commercial vessel operators and designers to re-assess current vessel designs with an emphasis on their propulsion systems. The most important parameter determining propulsive efficiency is the diameter of propeller. Many investigations have been carried out to adapt a large and slow turning propeller known as one of the most robust and effective way of achieving high efficiency in ship propulsion system. However, for the same vessel a further increase of propeller diameter would require the modification of the aft end while still paying attention to the hull clearance to prevent excessive propeller excited vibrations. In order to take the advantage of this approach small workboats (e.g. tug boats, fishing vessels etc.) operate in service with a significant increase of aft draught and hence resulting "inclined keel" configuration can be observed. Although it is not unusual to see large vessels sometimes to operate with stern trim to improve their operational performance and fuel efficiency, it is rare to see a such vessel purposely built with an inclined keel feature to fit a large diameter propeller for power saving. This paper investigates the application of the inclined keel configuration to a 3600TEU container vessel with the aim of fitting an 11 % larger diameter propeller (and hence resulting 17.5 % lower rpm) to gain further power saving over the similar size basis container ship with conventional "level keel" configuration.

넓은 충전전압 범위를 갖는 50kW급 고효율 급속충전기 개발 (Development of 50kW High Efficiency Fast Charger with Wide Charging Voltage Range)

  • 박준성;김민재;정헌수;김주하;최세완
    • 전력전자학회논문지
    • /
    • 제21권3호
    • /
    • pp.267-274
    • /
    • 2016
  • In this study, a fast charger for electric vehicle with wide charging voltage range is proposed. To achieve high efficiency, three-level topologies are employed for the AC-DC and DC-DC converters. Given that the output range of the DC-DC converter in fast chargers is quite wide, the circulating current of conventional three-level converter will increase under low voltage condition. The proposed hybrid switching method mitigates this issue. When a coupled inductor is used on the output side, the circulating current is further reduced, and the switches $S_2$, $S_3$, $S_6$, and $S_7$ achieve turning-off under the ZCS condition. Experimental results from a 50 kW prototype are provided to validate the proposed charger, and a rated efficiency of 95.9% is obtained.

Soft switched Synchronous Boost Converter for Battery Dischargers

  • Dong, Zhiyong;Joung, Gyubum
    • International journal of advanced smart convergence
    • /
    • 제9권2호
    • /
    • pp.105-113
    • /
    • 2020
  • In this paper, we proposed a soft switched synchronous boost converter, which can perform discharging the battery, is proposed. The proposed converter has low switching loss even at high frequency operation due to its soft switching characteristics. The converter operates in synchronous mode to minimize conduction loss because of changing the rectified diode to MOSFET with a low on resistance. In this reason, the efficiency of the converter can be greatly improved in high frequency. In this paper, the battery discharger with a switching frequency of 100 kHz, has been designed. The designed converter also simulated to prove the converter's characteristics of synchronous operation as well as soft switching operation. The simulation shows that the proposed converter always meets the soft switching conditions of turning on and off switching in the zero voltage and zero current states. Therefore, simulation results have confirmed that the proposed battery discharge had soft switching characteristics. The simulation results have confirmed that the proposed battery discharger had soft switching and synchronous operation characteristics.

A Single-Stage AC/DC Converter with Low Voltage Stresses and Reduced Switching Losses

  • Kim, Kyu-Tae;Choi, Woo-Young;Kwon, Jung-Min;Kwon, Bong-Hwan
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.823-834
    • /
    • 2009
  • This paper proposes a high-efficiency single-stage ac/dc converter. The proposed converter features low voltage stresses and reduced switching losses. It operates at the boundary of discontinuous- and continuous-conduction modes by employing variable switching frequency control. The turn-on switching loss of the switch can be reduced by turning it on when the voltage across it is at a minimum. The voltage across the bulk capacitor is independent of the output loads and maintained within the practical range for the universal line input, so the problem of high voltage stress across the bulk capacitor is alleviated. Moreover, the voltage stress of the output diodes is clamped to the output voltage, and the output diodes are turned off at zero-current. Thus, the reverse-recovery related losses of the output diodes are eliminated. The operational principles and circuit analysis are presented. A prototype circuit was built and tested for a 150 W (50V/3A) output power. The experimental results verify the performance of the proposed converter.

야지 고속 주행 로봇을 위한 패시브 메커니즘의 안정성 비교 분석 (Analysis for Stability for Passive Mechanisms of High Speed Mobile Robot on Rough Terrain)

  • 김영진;전봉수;김자영;이지홍
    • 로봇학회논문지
    • /
    • 제9권2호
    • /
    • pp.124-131
    • /
    • 2014
  • The robot mechanisms that were previously researched had only been conducted for the purpose of overcoming the obstacles stably at low speed driving and enhancing the stability against high speed circuitous driving, and yet, the mechanism satisfying two purposes. However, in order to stably drive with high speed on rough terrain, there is a need for satisfying both of these purposes, as well as testing the efficiency of the mechanisms at high speed driving. There, this paper simulated some of the passive mechanisms and focused on checking the performances of passive mechanisms through simulations and analyzing each mechanism on the basis of an evaluation index. The simulation was conducted by Adams (The Multi-body Dynamics Simulation Solution) and used various types of passive mechanisms which were introduced in the robotics field. As a result, the study confirmed that passive mechanisms have a number of situations that affect the driving stability on each direction of roll and pitch. Further study is needed about active mechanism.

Zero-Voltage Switching Dual Inductor-fed DC-DC Converter Integrated with Parallel Boost Converter

  • Seong, Hyun-Wook;Park, Ki-Bum;Moon, Gun-Woo;Youn, Myung-Joong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.523-525
    • /
    • 2008
  • Novel zero-voltage switching(ZVS) dual inductor-fed DC-DC converter integrating a conventional dual inductor-fed boost converter(DIFBC) and a parallel bidirectional boost converter has been proposed. Most of current-fed type boost topologies including dual inductor schemes have crucial defects such as a high voltage spike on the main switch when it comes to turning off, an unattainable soft start-up due to the limited range of duty ratio, above 50%, and considerable switching losses due to the hard switching. By adding two auxiliary switches and an output capacitor on the conventional DIFBC, the proposed circuit can solve mentioned problems and improve the efficiency with simple methods. The operational principle and theoretical analysis of the proposed converter have been included. Experimental results based on a 42V input, 400V/1A output and 50kHz prototype are shown to verify the proposed scheme.

  • PDF

Numerical Study of Passive Control with Slotted Blading in Highly Loaded Compressor Cascade at Low Mach Number

  • Ramzi, Mdouki;Bois, Gerard;Abderrahmane, Gahmousse
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.97-103
    • /
    • 2011
  • With the aim to increase blade loadings and stable operating range in highly loaded compressors, this article has been conducted to explore, through a numerical parametric study, the potential of passive control using slotted bladings in cascade configurations. The objective of this numerical investigation is to analyze the influence of location, width and slope of the slots and therefore identify the optimal configuration. The approach is based on two dimensional cascade geometry, low speed regime, steady state and turbulent RANS model. The results show the efficiency of this passive technique to delay separation and enhance aerodynamic performances of the compressor cascade. A maximum of 28.3% reduction in loss coefficient have been reached, the flow turning is increased with approximately $5^0$ and high loading over a wide range of angle of attack have been obtained for the optimized control parameter.

식초 산업의 발전사와 최근 현황 (History and current status of vinegar industry development)

  • 김현위
    • 식품과학과 산업
    • /
    • 제55권1호
    • /
    • pp.74-94
    • /
    • 2022
  • With the discovery of metabolic mechanisms of alcohol fermentation and acetic acid fermentation in the 1800s and 1900s, the history of traditional vinegar became a turning point for changing to the history of science and technology. Since then, innovation in vinegar production has occurred, and the era of full-scale mass industrialization has opened. The most modern method, submerged fermentation, has improved the vinegar production process to produce much higher quality vinegar and provide vinegar with high productivity and quality uniformity. Innovative research for vinegar production is underway as various approaches have been developed to increase fermentation efficiency, reduce costs, and shorten fermentation time due to the trend of combining existing technologies and advanced technologies. Now that the development of the vinegar industry is currently focused on vinegar engineering, multidisciplinary approaches in various fields such as microbiology, chemistry, food technology, process engineering, and molecular biology are needed.

Soft-Switched Synchronous Buck Converter for Battery Chargers

  • Dong, Zhiyong;Joung, Gyubum
    • International journal of advanced smart convergence
    • /
    • 제8권4호
    • /
    • pp.138-146
    • /
    • 2019
  • In this paper, we proposed a soft-switched synchronous buck converter, which can perform charging the battery. The proposed converter has low switching loss even at high frequency operation due to its soft switching characteristics. The converter operates in synchronous mode to minimize conduction loss, resulting in small conduction loss, also. In this reason, the efficiency of the converter can be greatly improved even in high frequency. The size and weight of the converter can be reduced by high frequency operation of the converter. In this paper, we designed a battery charger with a switching frequency of 100 kHz. The designed converter also simulated to prove the converter's characteristics of synchronous operation as well as soft switching operation. The simulation shows that the proposed converter always meets the soft switching conditions of turning on and off switching in the zero voltage and zero current states. Therefore, simulation results have confirmed that the proposed battery charger had soft switching characteristics. The simulation results for transient response to charge current for the designed converter show that the converter responds to charge current commands quickly within 0.05 ms.

무선 센서 네트워크에서 플래시 장치를 활용한 에너지 효율적 저장 (Energy-Efficient Storage with Flash Device in Wireless Sensor Networks)

  • 박정규;김재호
    • 한국통신학회논문지
    • /
    • 제42권5호
    • /
    • pp.975-981
    • /
    • 2017
  • 본 논문에서는 WSN 환경에서 플래시 장치를 사용할 때 에너지를 효율적으로 사용하기 위한 방법을 제안한다. 전형적인 플래시 장치는 높은 대기 에너지로 인해 에너지가 제한된 WSN에서 비효율적인 에너지 소모 저장 매체라는 단점을 가지고 있다. 플래시 장치를 WSN 환경에서 에너지 효율적으로 사용하기 가장 쉬운 방법은 유휴 상태일 때 플래시 장치를 끄는 것이다. 이와 관련하여 우리는 비휘발성 및 바이트 주소 지정 기능을 제공하는 새로운 메모리 기술인 NVRAM (Nonvolatile RAM)을 활용하여 높은 대기 에너지 소모 그리고 시작 지연시간을 제거함으로써 간단하지만 이상적인 접근 방식을 현실적으로 제안한다. 특히 NVRAM을 메타 데이터 저장소의 확장으로 사용하여 FTL 메타 데이터 검색 프로세스를 제거하여 앞의 두 가지 장애 요소를 해결 하고자 한다. 실험을 통해 제안하는 방법이 기존 저장장치 비해 약 1.087% 에너지 만을 사용함을 알 수 있었다.