• Title/Summary/Keyword: High temperature tensile properties

Search Result 662, Processing Time 0.041 seconds

Effects of Vacuum Hot Pressing Conditions on Mechanical Properties and Microstructures of $SiC_w$/2124Al Metal Matrix Composites (Vacuum Hot Pressing 조건이 $SiC_w$/2124AI 금속복합재료의 기계적 성질 및 미세구조에 미치는 영향)

  • 홍순형
    • Journal of Powder Materials
    • /
    • v.1 no.2
    • /
    • pp.159-166
    • /
    • 1994
  • The variation of the microstructures and the mechanical properties with varying vacuum hot pressing temperature and pressure was investigated in PyM processed 20 vol%) SiCw/ 2124Al composites. As increasing the vacuum hot pressing temperature, the aspect ratio of whiskers and density of composites increased due to the softening of 2124Al matrix with the increased amount of liquid phase. The tensile strength of composite increased with increasing vacuum hot pressing temperature up to $570^{\circ}C$ and became saturated above $570^{\circ}C$, To attain the high densification of composites above 99%, the vacuum hot pressing pressure was needed to be above 70 MPa. However, the higher vacuum hot pressing pressure above 70 MPa was not effective to increase the tensile strength due to the reduced aspect ratio of SiC whiskers from damage of whiskers during vacuum hot pressing. A phenomenological equation to predict the tensile strength of $SiC_w$/2124AI composite was proposed as a function including two microstructural parameters, i.e. density of composites and aspect ratio of whiskers. The tensile strength of $SiC_w$/2124AI were found more sensitive to the porosity than other P/M materials due to the higher stress concentration and reduced load transfer efficiency by the pores locating at whisker/matrix interfaces.

  • PDF

Long Term Reliability of Fluroelastomer (FKM) O-ring after Exposure to High Pressure Hydrogen Gas

  • Choi, Myung-Chan;Lee, Jin-Hyok;Yoon, Yu-mi;Jeon, Sang-Koo;Bae, Jong-Woo
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.270-276
    • /
    • 2020
  • The long-term durability of an FKM O-ring used as parts of a hydrogen station was investigated by exposing it to high-pressure gaseous hydrogen for 1, 3, and 7 days at room temperature. Changes in its sealing force were subsequently measured at 150℃ using intermittent compression stress relaxation (CSR). No changes in the tensile properties of FKM O-ring were observed, but its initial and overall sealing forces at 150℃ significantly decreased with increasing exposure time to hydrogen gas. Microvoid formation in the FKM O-ring upon exposure to high-pressure hydrogen was minimized over time after the ring was exposed to atmospheric pressure at room temperature, which prevented changes in its tensile properties. However, applying heat accelerated FKM O-ring oxidation, which decreased its sealing force. These results indicated that identifying changes in the sealing force of rubber materials using intermittent CSR is not sufficient for monitoring changes in mechanical properties under high-pressure hydrogen atmospheres; however, it is suitable for evaluating the long-term durability of sealing materials for hydrogen station applications under similar conditions.

Temperature Effect on Tensile Fracture Behavior of Thermoplastic Glass Fiber/Polyethylene Composites (온도변화에 따른 열가소성 복합재료 유리섬유/폴리에틸렌의 인장파괴거동)

  • KOH S. W.;CHOI Y. K.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.326-330
    • /
    • 2004
  • Thermosetting matrix composites have disadvantages in terms of moulding time, repairability and manufacturing cost. Thus the high-performance thermoplastic composites to eliminate such disadvantages have been developed so far. As a result of environmental and economical concerns, there is a growing interest in the use of thermoplastic composites. However, since their mechanical properties are very sensitive to the environment such as moisture, temperature etc., those behaviors need to be studied. Particularly the temperature is a very important factor influencing the mechanical behavior of thermoplastic composites. The effect of temperature have not yet been fully quantified. Since engineering applications of reinforced composites necessitate their fracture mechanics characterization, work is in progress to investigate the fracture and related failure behavior. An approach which predicts the tensile strength was perpormed in the tensile test. The main goal of this work is to study the effect of temperature on the result of tensile test with respect to GF/PE composite. The tensile strength and failure mechanisms of GF/PE composites were investigated in the temperature range $60^{\circ}C\;to\;-50^{\circ}C$. The tensile strength increased as the fiber volume fraction ratio increased. The tensile strength showed the maximum at $-50^{\circ}C$, and it tended to decrease as the temperature increased from $-50^{\circ}C$. The major failure mechanisms was classified into the fiber matrix debonding, the fiber pull-out, the delamination and the matrix deformation.

  • PDF

A Study on the Physical Properties of Double Raschel Pile Fabric according to Heat Treatment (더블라셀파일 원단의 열처리조건에 따른 물리적 특성 변화에 관한 연구)

  • Son, Eun Jong;Park, Hong Won;Hwang, Young Gu
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.288-297
    • /
    • 2019
  • The specimens were heat treated at 180℃, 190℃, 200℃, 210℃ and 220℃ to observe the change of the physical properties of the double raschel pile fabric. The density, tensile strength, weight, elongation, dyeing characteristics, fabric surface morphology and cross sectional shape were observed by heat treatment temperature. Compared with untreated samples, weight, density and tensile strength were increased with increasing heat treatment temperature. No increase was observed at 220℃. In the case of elongation, it increased to 190℃ but thereafter it could not be observed. In the case of uprightness of brushed hair, it was observed that the gap between the yarns was narrowed and the density was increased and the straightness of the yarn and pile yarn was improved by widening the heat treatment temperature. As a result, it was observed that the uprightness was remarkably improved and the bulky properties was increased. It was also observed that the increase of the dyeability was observed with increasing the heat treatment temperature.

Calendering Effects on the Properties of TiO$_2$ Highly Leaded Paper (캘린더링이 TiO$_2$ 고 충전지의 특성에 미치는 영향)

  • 오세중;서영범
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.4
    • /
    • pp.69-78
    • /
    • 1998
  • Papers loaded with 10-40% $TiO_2$ by dry weight were calendered under the various combinations of calendering conditions such as calender type, linear pressure, and roll temperature. After being calendered, light scattering coefficient, surface roughness, density, and tensile strength of the papers were measured and the results were summerized as follows: 1. To increase the light scattering coefficient of $TiO_2$-highly-loaded paper further by calendering, the calender roll pressure and temperature should be kept low. Under these conditions, the physical strength of the paper was not significantly affected. 2. At low roll temperature, soft nip calender and machine calender type showed the same relationship between paper density and its roughness. At high roll temperature, soft nip calender type gave much lower roughness than machine calender type at the same density. 3. At high roll temperature of both calenders, the density as well as the tensile strength of the TiO$_2$-loaded paper was increased significantly.

  • PDF

Development of Finite Element Program for Analyzing Springback Phenomena of Non-isothermal Forming Processes for Aluminum Alloy Sheets(Part 1 : Experiment) (알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 ( 1부 : 실험 ))

  • 금영탁;유동열;한병엽
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.202-207
    • /
    • 2003
  • In order to examine the springback amount and material properties of aluminum alloy sheets (AL1050 and AL5052) in the warm forming which forms the sheet above the room temperature, the stretch bending and draw bending tests and tensile test in various high temperatures are carried out. The warm forming temperature 15$0^{\circ}C$ is a transition in terms of the material properties: over the forming temperature 15$0^{\circ}C$, them $\sigma$$_{YS}$ , $\sigma$$_{TS}$ , E, K, n, etc. are bigger but $\varepsilon$ and plastic strain ratio are smaller. Below the forming temperature 15$0^{\circ}C$, there are no big differences in material properties as the forming temperature changes. AL5052 sheet has more springback effect than AL1050 sheet. While the springbacks of AL5052 and AL1050 sheets show a big reduction over the warm forming temperature 15$0^{\circ}C$ in the stretch bending test, the springback rapidly reduces in the warm forming temperature 15$0^{\circ}C$-20$0^{\circ}C$ for AL5052 sheet and 20$0^{\circ}C$-25$0^{\circ}C$ for AL1050 sheet in the draw bending test.

Degradation Characteristics of Multi-walled Carbon Nanotube Embedded Nanocomposites (다중벽 탄소나노튜브가 함유된 나노복합재의 열화 특성)

  • Yoon, Sung Ho;Park, Ji Hye
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.422-428
    • /
    • 2017
  • The moisture absorption behavior, tensile properties, and thermal analysis properties of MWCNT embedded nanocomposites exposed to temperature and moisture were evaluated. The contents of MWCNT were 0 wt%, 1 wt%, and 2 wt%, respectively. The specimens were exposed to immersed conditions at $25^{\circ}C$ and $75^{\circ}C$ for up to 600 hours. According to the results, the apparent moisture content increased as the exposure time increased, but the difference between the maximum moisture content and the moisture content at 600 hours was almost constant. The tensile modulus decreased with increasing exposure time and the degree of decrease was increased significantly as the MWCNT content and exposure temperature increased. The tensile strength decreased with longer exposure time without MWCNT, but increased with MWCNT due to the reinforcing effect of MWCNT. The storage modulus, glass transition temperature, tan d peak magnitude were low as the exposure time increased, but tan d curves with two peaks appeared when exposed to high exposure temperature for more than 300 hours.

Effect of High Temperature Aging Time on Mechanical Characteristics Degradation of STS 304 Steel (STS 304 강의 기계적 특성에 미치는 고온 열화 시간의 영향)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.380-385
    • /
    • 2017
  • Mechanical characteristics of the STS 304 which is heat resistance steel were investigated after artificial aging at $650^{\circ}C$ with 1,000 hours. Tensile test specimens and small test pieces were done artificial aging up to 1,000 hours in the high temperature atmospheric environment. The results present that as the aging time increased, tensile properties were deteriorated. In the case of failure mechanism, the configuration of the fractography presented drastic change from ductile to brittle with aging time. $M_{23}C_6$ carbide leading to the change of the mechanical properties and fracture mode of the aged STS 304 steel continuously precipitated along the grain boundaries of austenite microstructure.

Characteristics of Dynamic Strain Aging(DSA) in SA106Gr.C Piping Steel

  • Kim, Jin-Weon;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.771-776
    • /
    • 1995
  • Tensile and J-R tests were carried out to estimate the effects of dynamic strain aging(DSA) on SA106Gr.C piping steel. Tensile tests were performed under temperature range RT to $400^{\circ}C$ md strain rates from $1.39{\times}10^{-4}\;to\;6.95{\times}10^{-2}/s$. Fracture toughness was tested in the temperature range RT to $350^{\circ}C$ and load-line displacement rates 0.4 and 4mm/min. The effects of DSA on the tensile properties were clearly observed for phenomena such serrated flow, variation of ultimate and yield stress, and negative stram rate sensitivity. However, the magnitude of serration and strength increase by DSA was relatively small. this may be due to high ratio of Mn to C. In addition, crack initiation resistance, Ji and crack growth resistance, dJ/da were reduced in the range of $200-300^{\circ}C$, where DSA appeared as serrated flow and UTS hardening. The temperature corresponding to minimum fracture resistance was shifted to higher temperature with increasing loading rate.

  • PDF

ANALYSIS OF NECKING DEFORMATION AND FRACTURE CHARACTERISTICS OF IRRADIATED A533B RPV STEEL

  • Kim, Jin Weon;Byun, Thak Sang
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.953-960
    • /
    • 2012
  • This paper reports the irradiation effect on the deformation behavior and tensile fracture properties of A533B RPV steel. An inverse identification technique using iterative finite element (FE) simulation was used to determine those properties from tensile data for the A533B RPV steel irradiated at 65 to $100^{\circ}C$ and deformed at room temperature. FE simulation revealed that the plastic instability at yield followed by softening for higher doses was related to the occurrence of localized necking immediately after yielding. The strain-hardening rate in the equivalent true stress-true strain relationship was still positive during the necking deformation. The tensile fracture stress was less dependent on the irradiation dose, whereas the tensile fracture strain and fracture energy decreased with increasing dose level up to 0.1 dpa and then became saturated. However, the tensile fracture strain and fracture energy still remained high after high-dose irradiation, which is associated with a large amount of ductility during the necking deformation for irradiated A533B RPV steel.