DOI QR코드

DOI QR Code

Degradation Characteristics of Multi-walled Carbon Nanotube Embedded Nanocomposites

다중벽 탄소나노튜브가 함유된 나노복합재의 열화 특성

  • Received : 2017.12.12
  • Accepted : 2017.12.26
  • Published : 2017.12.31

Abstract

The moisture absorption behavior, tensile properties, and thermal analysis properties of MWCNT embedded nanocomposites exposed to temperature and moisture were evaluated. The contents of MWCNT were 0 wt%, 1 wt%, and 2 wt%, respectively. The specimens were exposed to immersed conditions at $25^{\circ}C$ and $75^{\circ}C$ for up to 600 hours. According to the results, the apparent moisture content increased as the exposure time increased, but the difference between the maximum moisture content and the moisture content at 600 hours was almost constant. The tensile modulus decreased with increasing exposure time and the degree of decrease was increased significantly as the MWCNT content and exposure temperature increased. The tensile strength decreased with longer exposure time without MWCNT, but increased with MWCNT due to the reinforcing effect of MWCNT. The storage modulus, glass transition temperature, tan d peak magnitude were low as the exposure time increased, but tan d curves with two peaks appeared when exposed to high exposure temperature for more than 300 hours.

본 연구에서는 온도와 수분에 노출된 다중벽 탄소나노튜브가 함유된 나노복합재의 수분흡수거동, 인장특성, 열분석특성을 평가하였다. 이때 탄소나노튜브 함유량은 0 wt%, 1 wt%, 2 wt%를 고려하였으며 시편은 각각 $25^{\circ}C$$75^{\circ}C$의 침수조건에 600시간까지 노출시켰다. 연구결과에 따르면 수분흡수량은 노출시간이 길어지면 증가하지만 최대 수분흡수량과 600시간에서의 수분흡수량 차이는 일정하게 나타났다. 인장탄성계수는 노출시간이 길어지면 낮아지고 탄소나노튜브 함유량이 많고 노출온도가 높아지면 감소 정도는 크게 나타났다. 인장강도는 탄소나노튜브가 함유되지 않은 경우 노출시간이 길어지면 감소하지만 MWCNT 함유되면 MWCNT의 보강 효과로 인해 증가하는 양상이 나타났다. 저장탄성계수, 유리전이온도, $tan{\delta}$ 피크 크기는 노출시간이 길어지면 낮게 나타나며 높은 노출온도에 300시간 이상 노출되면 두 개의 피크를 갖는 $tan{\delta}$ 선도가 나타났다.

Keywords

References

  1. A. Allaoui, S. Bai, H.M. Cheng, and J.B. Bai, "Mechanical and Electrical Properties of a MWNT/epoxy Composite," Composites Science and Technology, Vol. 62, 2002, pp. 1993-1998. https://doi.org/10.1016/S0266-3538(02)00129-X
  2. F.H. Gojny and K. Schulte, "Functionalisation Effect on the Thermo-mechanical Behaviour of Multi-wall Carbon Nanotube/ epoxy-composites," Composites Science and Technology, Vol. 64, 2004, pp. 2303-2308. https://doi.org/10.1016/j.compscitech.2004.01.024
  3. J. Vera-Agullo, A. Gloria-Pereira, H. Varela-Rizo, J.L. Gonzalez, and I. Martin-Gullon, "Comparative Study of the Dispersion and Functional Properties of Multiwall Carbon Nanotubes and Helical-ribon Carbon Nanofibers in Polyester Nanocomposites," Composite Science and Technology, Vol. 69, 2009, pp. 1521-1532. https://doi.org/10.1016/j.compscitech.2008.11.032
  4. E. Urena-Benavides, M.J. Kaytin, and V.A. Davis, "Dispersion and Rheology of Multiwalled Carbon Nanotubes in Unsaturated Polyester Resin," Macromolecules, Vol. 46, 2013, pp. 1642-1650. https://doi.org/10.1021/ma3017844
  5. M.M. Shokrieh, A. Saeedi, and M. Chitsazzadeh, "Mechanical Properties of Multi-walled Carbon Nanotube/Polyester Nanocomposites," Journal of Nanostructure in Chemistry, Vol. 3, 2013, pp. 1642-1650.
  6. D.K. Rathore, R.K. Prusty, D.S. Kumar, and B.C. Ray, "Mechanical Performance of CNT-filled Glass Fiber/epoxy Composite in In-situ Elevated Temperature Environments Emphasizing the Role of CNT Content," Composites: Part A, Vol. 84, 2016, pp. 364-376. https://doi.org/10.1016/j.compositesa.2016.02.020