• Title/Summary/Keyword: High temperature cooling

Search Result 1,546, Processing Time 0.028 seconds

Effect of cooling water temperature on the temperature changes in pulp chamber and at handpiece head during high-speed tooth preparation

  • Farah, Ra'fat I.
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.1
    • /
    • pp.3.1-3.10
    • /
    • 2019
  • Objectives: It was the aim of this study to evaluate the effect of cooling water temperature on the temperature changes in the pulp chamber and at the handpiece head during high-speed tooth preparation using an electric handpiece. Materials and Methods: Twenty-eight intact human molars received a standardized occlusal preparation for 60 seconds using a diamond bur in an electric handpiece, and one of four treatments were applied that varied in the temperature of cooling water applied (control, with no cooling water, $10^{\circ}C$, $23^{\circ}C$, and $35^{\circ}C$). The temperature changes in the pulp chamber and at the handpiece head were recorded using K-type thermocouples connected to a digital thermometer. Results: The average temperature changes within the pulp chamber and at the handpiece head during preparation increased substantially when no cooling water was applied ($6.8^{\circ}C$ and $11.0^{\circ}C$, respectively), but decreased significantly when cooling water was added. The most substantial drop in temperature occurred with $10^{\circ}C$ water ($-16.3^{\circ}C$ and $-10.2^{\circ}C$), but reductions were also seen at $23^{\circ}C$ ($-8.6^{\circ}C$ and $-4.9^{\circ}C$). With $35^{\circ}C$ cooling water, temperatures increased slightly, but still remained lower than the no cooling water group ($1.6^{\circ}C$ and $6.7^{\circ}C$). Conclusions: The temperature changes in the pulp chamber and at the handpiece head were above harmful thresholds when tooth preparation was performed without cooling water. However, cooling water of all temperatures prevented harmful critical temperature changes even though water at $35^{\circ}C$ raised temperatures slightly above baseline.

Experimental Study on Cooling Characteristics of Multi - Air Conditioner using Inverter Scroll Compressor (인버터 스크롤 압축기를 사용한 멀티 에어컨의 냉방 특성에 대한 실험적 연구)

  • 권영철;고국원;진의선;허삼행;전용호;이영덕;박인규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.311-317
    • /
    • 2004
  • In the present study, the cooling characteristics of the multi-air conditioner (A/C) using an inverter scroll compressor are experimentally investigated for the number of the indoor units and the operating conditions (2$0^{\circ}C$, 24$^{\circ}C$, 26$^{\circ}C$) under the cooling standard conditions by KS C 9306. In the case of the simultaneous operation for 3 indoor units, the cooling capacity, the mass flow rate and the input power have a decreasing trend and COP has an increasing trend, with decreasing the difference in the operating temperature of the indoor unit and the room temperature. In the case of the simultaneous operation for 2 indoor units, the COP of the indoor unit with large cooling capacity is high when the operating temperature is high, but the COP of the indoor unit with low cooling capacity is high when the operating temperature is low. In the case of the single operation for one unit, when the large cooling capacity of the indoor unit is less than 50% the compressor operates at the minimum operation frequency region and the COP decreases.

Temperature Analysis of Electrostatic Chuck for Cryogenic Etch Equipment (극저온 식각장비용 정전척 쿨링 패스 온도 분포 해석)

  • Du, Hyeon Cheol;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.19-24
    • /
    • 2021
  • As the size of semiconductor devices decreases, the etching pattern becomes very narrow and a deep high aspect ratio process becomes important. The cryogenic etching process enables high aspect ratio etching by suppressing the chemical reaction of reactive ions on the sidewall while maintaining the process temperature of -100℃. ESC is an important part for temperature control in cryogenic etching equipment. Through the cooling path inside the ESC, liquid nitrogen is used as cooling water to create a cryogenic environment. And since the ESC directly contacts the wafer, it affects the temperature uniformity of the wafer. The temperature uniformity of the wafer is closely related to the yield. In this study, the cooling path was designed and analyzed so that the wafer could have a uniform temperature distribution. The optimal cooling path conditions were obtained through the analysis of the shape of the cooling path and the change in the speed of the coolant. Through this study, by designing ESC with optimal temperature uniformity, it can be expected to maximize wafer yield in mass production and further contribute to miniaturization and high performance of semiconductor devices.

Study on Design of high Efficient Cooling System for Low Temperature Furnace in Semiconductor Processing (반도체 공정용 저온 열처리로의 고효율 냉각시스템 설계에 관한 연구)

  • Jeoung, Du-Won;Suh, Ma-Son;Kim, Kwang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.71-76
    • /
    • 2010
  • According to recent changes in industry for semiconductor devices, a low-temperature treatment has become a necessity. These changes relate to size refinement and the development of new materials. While variation in cooling efficiency does not affect the yield when using a high-temperature treatment, uniform cooling efficiency is necessary avoid "inconsistencies/bends" in low temperature treatments. However it is difficult to increase temperature stabilization in low temperature treatments. In this paper, using CFD (Computer Fluid Dynamics), we analyze and manipulate the design and input of the low-temperature system to attempt to control for temperature variations within the quartz tube, of which airflow appears to be a predominant factor. This simulation includes variable inputs such as airflow rate, head pressure, and design manipulations in the S.C.U. (Super Cooling Unit).

Development of High-Temperature Heat Flux Gauge for Steel Quenching (강재 급속냉각용 고온 열유속게이지 개발)

  • Lee, Jungho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.323-330
    • /
    • 2010
  • The present study was motivated by increasing demands on quantitative measurements of the heat flux through the water cooling and quenching process of hot steel. The local heat flux measurements are employed by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are directly used to measure the heat flux variation during water cooling and quenching of hot steel. The heat flux can be directly achieved by Fourier's law and is also compared with numerical estimation which is solved by inverse heat conduction problem (IHCP). The high-temperature heat flux gauge developed in this study can be applicable to measure cooling rate and history during the actual cooling applications of steelmaking process. In addition, the measurement uncertainty of heat flux is calculated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard.

Thermal Analysis of Exhaust Diffuser Cooling Channels for High Altitude Test of Rocket Engine (로켓엔진 고공환경 모사용 디퓨져의 냉각 채널 열 해석)

  • Cho, Kie-Joo;Kim, Yong-Wook;Kan, Sun-Il;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.193-197
    • /
    • 2010
  • Water cooling ducts are installed in the exhaust diffuser for high altitude tests of rocket engine to protect diffuser from high-temperature combustion gas. The mass flow rate and pressure of cooling water is designed to prevent boiling of cooling water in the ducts. Therefore, the estimation of maximum temperature of duct wall is important parameter in design of cooling system, especially pressure of cooling water. The method for predicting maximum temperatures of duct walls with variation of coolant flow rates was derived theoretically.

Effect of Cooling Water Temperature on Heat Transfer Characteristics of Water Impinging Jet (냉각수 온도에 따른 수분류 충돌제트의 열전달 특성 연구)

  • Lee, Jungho;Yu, Cheong-Hwan;Do, Kyu Hyung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.249-256
    • /
    • 2010
  • Water jet impingement cooling has been widely used in a various engineering applications; especially in cooling of hot steel plate of steelmaking processes and heat treatment in hot metals as an effective method of removing high heat flux. The effects of cooling water temperature on water jet impingement cooling are primarily investigated for hot steel plate cooling applications in this study. The local heat flux measurements are introduced by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are used to measure the heat flux distribution during water jet impingement cooling. The experiments are performed at fixed flow rate and fixed nozzle-to-target spacing. The results show that effects of cooling water temperature on the characteristics of jet impingement heat transfer are presented for five different water temperatures ranged from 5 to $45^{\circ}C$. The local heat flux curves and heat transfer coefficients are also provided with respect to different boiling regimes.

Mist Cooling of High-Temperature Cylinder Surface (고온 실린더의 미스트 냉각)

  • Kim, Mu-Hwan;Lee, Su-Gwan;Park, Ji-Man;Lee, Pil-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.448-457
    • /
    • 2002
  • Heat treatment such as quenching of a high-temperature cylinder is being used on steel to produce high strength levels. Especially, the mist cooling with the high and uniform surface heat flux rate s expected to contribute for better products. The experimental mist cooling curve is produced for better understanding, and two distinct heat transfer regions are recognized from the cooling curve produced. It is shown that the liquid film evaporation dominated region follows the film boiling-dominated region as decreasing the temperature of test cylinder by mist flow. Based on the intuitive view from some previous investigations, a simplified model with some assumptions is introduced to explain the mist cooling curve, and it is shown that the estimation agrees well with our experimental data. In the meanwhile, it is known that the wetting temperature, at which surface heat flux rate is a maximum, increases with mass flow rate ratio of water to air ($\varkappa$ < 10). However, based on our experimental data, it is explained that there exists a critical mass flow rate ratio, at which the wetting temperature is maximum, in the range of 3 < $\varkappa$ < 130. Also, it is described that despite of the same value of $\varkappa$, the wetting temperature may increase with mist velocity.

Thermal Analysis of a Battery Cooling System with Aluminum Cooling Plates for Hybrid Electric Vehicles and Electric Vehicles (알루미늄 냉각 판을 이용한 하이브리드/전기차용 배터리 냉각시스템의 수치적 연구)

  • Baek, Seungki;Park, Sungjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.60-67
    • /
    • 2014
  • The battery cells in lithium-ion battery pack assembled with high-capacity and high-power pouch cells, are commonly cooled with thin aluminum cooling plates in contact with the cells. For HEV/EV lithium-ion battery systems assembled with high-capacity, high-power pouch cells, the cells are commonly cooled with thin aluminum cooling plates in contact with the cells. Thin aluminum cooling plates are cooled by cold plate with coolant flow paths. In this study, the effect of the battery cooling system design including aluminum cooling plate thickness and various position of cold plate on the cooling performance are investigated by using finite element methods (FEM). Optimal cooling plate and cold plate design are proposed for improving the uniformity in temperature distributions as well as lowering average temperature for the cells with large capacities based on the simulation results.

Evaluation of the Lighting Characteristics in High Power White LED Module with Cooling Condition (방열 조건에 따른 5W급 고출력 백색 LED 모듈의 광 특성 평가)

  • Yun, Janghee;Ryeom, Jeongduk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.1-8
    • /
    • 2012
  • The performance and lighting characteristics of the LED depend on cooling condition because the power LED generates lots of heat. In this paper, the effect of the generated heat from power LED module on lighting characteristics and performance is measured and evaluated. For experiments, the transient temperature of a power LED module with cooling condition is measured. In addition, the temperature and lighting characteristics of the LED module are measured during the steady state. As a result, the cooling condition is less effective on the lighting characteristics of the LED module at rated current but the cooling condition extremely affects those of the LED module over the rated current. Because high temperature of the power LED module causes the low phosphor conversion, luminance efficiency becomes low and color temperature becomes high. When power LED module are driven over the rated condition, higher temperature is directly related to lighting characteristics and performance of the LED module rather than higher current.