• Title/Summary/Keyword: High strength low alloy steel

Search Result 77, Processing Time 0.024 seconds

Effect of Coiling Temperature and Alloying Elements on the Mechanical Properties and Precipitation Behavior in High Strength Hot Rolled Steel Sheets (고강도 열연강판의 기계적 성질과 석출거동에 미치는 권취온도와 합금원소의 영향)

  • Kang, S.S.;Lee, O.Y.;Han, S.H.;Jin, K.G.;Seong, B.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.683-690
    • /
    • 2003
  • The high strength low alloy(HSLA) steels microalloyed with Nb, Ti and V have been widely used as the automobile parts to decrease weight of vehicles. The effects of process conditions are investigated in the aspects of the precipitation behavior and the mechanical properties of HSLA steel microalloyed with Nb and Ti using TEM, SANS and mechanical testing. When Ti was added to a 0.07C-1.7Mn steel which was coiled at $500^{\circ}C$, the specimen revealed the property of higher tensile strength of 853.1 MPa and the stretch-flangeability of 60%. The stretch-flangeability was increased up to 97.8% for coiling temperature above $700^{\circ}C$. The precipitation hardening cannot be achieved in the 0.045C-1.65Mn steel which was the lower density of fine precipitates. However, the 0.07C-1.7Mn steels containing Nb and/or Ti which was coiled at X$/^{\circ}C$ have a high precipitates density of $2${\times}$10^{ 5}$/$\mu$㎥. The high strength of these steels was attributed to the precipitation hardening caused by a large volume froction of (Ti, Nb)C precipitates with a size below 5 nm in ferrite matrix.

Effects of Strain Rate and Temperature on Fracture Strength of Ceramic/Metal Joint Brazed with Ti-Ag-Cu Alloy

  • Seo, Do-Won;Lim, Jae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1078-1083
    • /
    • 2002
  • Ceramics are significantly used in many industrial applications due to their excellent mechanical and thermal properties such as high temperature strength, low density, high hardness, low thermal expansion, and good corrosion resistive properties, while their disadvantages are brittleness, poor formability and high manufacturing cost. To combine advantages of ceramics with those of metals, they are often used together as one composite component, which necessiates reliable joining methods between metal and ceramic. Direct brazing using an active filler metal has been found to be a reliable and simple technique, producing strong and reliable joints. In this study, the fracture characteristics of Si$_3$N$_4$ ceramic joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu (0.25-0.3 mm) interlayer are investigated as a function of strain rate and temperature. In order to evaluate a local strain a couple of strain gages are pasted at the ceramic and metal sides near joint interface. As a result the 4-point bending strength and the deflection of interlayer increased at room temperature with increasing strain rate. However bending strength decreased with temperature while deflection of interlayer was almost same. The fracture shapes were classified into three groups ; cracks grow into the metal-brazing filler line, the ceramic-brazing filler line or the ceramic inside.

Effects of Ni and Cr Contents on the Fracture Toughness of Ni-Mo-Cr Low Alloy Steels in the Transition Temperature Region (Ni-Mo-Cr계 저합금강의 천이온도영역에서의 파괴인성에 미치는 Ni 및 Cr 함량의 영향)

  • Lee, Ki-Hyoung;Park, Sang-Gyu;Kim, Min-Chul;Lee, Bong-Sang;Wee, Dang-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.533-541
    • /
    • 2009
  • Materials used for a reactor pressure vessel(RPV) are required high strength and toughness, which determine the safety margin and life of a reactor. Ni-Mo-Cr low alloy steel shows better mechanical properties than existing RPV steels due to higher Ni and Cr contents compared to the existing RPV steels. The present study focuses on effects of Ni, Cr contents on the cleavage fracture toughness of Ni-Mo-Cr low alloy steels in the transition temperature region. The fracture toughness was characterized by a 3-point bend test of precracked Charpy V-notch(PCVN) specimens based on ASTM E1921-08. The test results indicated that the fracture toughness was considerably improved with an increase of Ni and Cr contents. Especially, control of Cr content was more effective in improving fracture toughness than manipulating Ni content, though Charpy impact toughness was changed more extensively by adjusting Ni content. These differences between changes in the fracture toughness and that in the impact toughness were derived from microstructural features, such as martensite lath size and carbide precipitation behavior.

High alloyed new stainless steel shielding material for gamma and fast neutron radiation

  • Aygun, Bunyamin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.647-653
    • /
    • 2020
  • Stainless steel is used commonly in nuclear applications for shielding radiation, so in this study, three different types of new stainless steel samples were designed and developed. New stainless steel compound ratios were determined by using Monte Carlo Simulation program Geant 4 code. In the sample production, iron (Fe), nickel (Ni), chromium (Cr), silicium (Si), sulphur (S), carbon (C), molybdenum (Mo), manganese (Mn), wolfram (W), rhenium (Re), titanium (Ti) and vanadium (V), powder materials were used with powder metallurgy method. Total macroscopic cross sections, mean free path and transmission number were calculated for the fast neutron radiation shielding by using (Geant 4) code. In addition to neutron shielding, the gamma absorption parameters such as mass attenuation coefficients (MACs) and half value layer (HVL) were calculated using Win-XCOM software. Sulfuric acid abrasion and compressive strength tests were carried out and all samples showed good resistance to acid wear and pressure force. The neutron equivalent dose was measured using an average 4.5 MeV energy fast neutron source. Results were compared to 316LN type stainless steel, which commonly used in shielding radiation. New stainless steel samples were found to absorb neutron better than 316LN stainless steel at both low and high temperatures.

Effect of Carbon and Nickel on Microstructure and Low Temperature Charpy Impact Properties of HSLA Steels (HSLA 강의 미세조직과 저온 샤르피 충격 특성에 미치는 탄소와 니켈의 영향)

  • Eom, Haewon;Cho, Sung Kyu;Cho, Young Wook;Shin, Gunchul;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.184-196
    • /
    • 2020
  • In this study, effects of carbon and nickel on microstructure and low temperature Charpy impact properties of HSLA (high strength low alloy) steels are investigated. To understand the complex phase transformation behavior of HSLA steels with high strength and toughness before and after welding processes, three kinds of HSLA steels are fabricated by varying the carbon and nickel content. Microstructure analysis, low temperature Charpy impact test, and Vickers hardness test are performed for the base metals and CGHAZ (coarse-grain heat affected zone) specimens. The specimens with the lowest carbon and nickel content have the highest volume fraction of AF, the lowest volume fraction of GB, and the smallest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the highest. The specimens with increased carbon and nickel content have the lowest volume fraction of AF, the highest volume fraction of GB, and the largest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the lowest.

A Study on the Surface Roughness of Aluminum Alloy for Heat Exchanger Using Ball End Milling

  • Chung, Han-Shik;Lee, Eun-Ju;Jeong, Hyo-Min;Kim, Hwa-Jeong
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.64-69
    • /
    • 2015
  • Aluminum alloy is a material with a high strength-weight ratio and excellent thermal conductivity. It neither readily corrodes nor quickly weakens at low temperatures, but can be easily recycled. Because of these features, aluminum heat exchangers are widely used in aluminum alloy. In addition, the aluminum alloy used in other areas is expected to gradually increase. As a result, researchers have been continuously studying the cutting patterns of aluminium alloy. However, such studies are fewer than those on the cutting patterns of ordinary steel. Moreover, the research on ball endmilling with aluminium alloys has not received much attention. Therefore, in this study, an attempt was made to find the optimal cutting pattern among the seven cutting patterns for the machining of the commonly used aluminum alloy using ball endmilling for a heat exchanger. The optimal pattern was found by comparing the different shapes and surface roughness values produced by the seven patterns.

Effect of Nb Addition on Phase Transformation Behavior during Continuous Cooling in Low Carbon Steels for Recrystallization Control Rolling (재결정제어압연용 저탄소강의 연속냉각 상변태거동에 미치는 Nb 첨가효과)

  • Lee, Sang Woo;Choo, Wung Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.5
    • /
    • pp.346-354
    • /
    • 2000
  • Effect of Nb addition on the phase transformation behavior was studied through continuous cooling transformation tests after reheating(reheating CCT) and deforming(deforming CCT) the 0.07%C-1.3%Mn-0.015%Ti-(0~0.08)% Nb steels. Transformation temperatures for deforming CCT were lower than those for reheating CCT, and the critical cooling rate for bainite transformation during deforming CCT was lower than that during reheating CCT. These enhanced hardenability for deforming CCT was considered to come from the sufficient solid solution of Nb in austenite during high temperature reheating before deformation. With Nb addition, the phase transformation temperature decreased, the bainite formation was enhanced, and the hardness of steel increased. Furthermore, these phenomena were more remarkable for deforming CCT than for reheating CCT. From the results, Nb-Ti bearing low carbon steel was considered to be a very favorable alloy system with good strength/toughness balance by recrystallization control rolling process.

  • PDF

Alloy Design and Properties of Ni based Superalloy LESS 1: I. Alloy Design and Phase Stability at High Temperature (Ni기 초내열 합금 LESS 1의 합금설계 및 평가: I. 합금 설계 및 고온 상 안정성 평가)

  • Youn, Jeong Il;Kang, Byung Il;Choi, Bong Jae;Kim, Young Jig
    • Journal of Korea Foundry Society
    • /
    • v.33 no.5
    • /
    • pp.215-225
    • /
    • 2013
  • The alloys required for fossil power plants are altered from stainless steel that has been used below $600^{\circ}C$ to Ni-based alloys that can operate at $700^{\circ}C$ for Hyper Super Critical (HSC) steam turbine. The IN740 alloy (Special Metals Co. USA) is proposed for improved rupture strength and corrosion resistance at high temperature. However, previous studies with experiments and simulations on stable phases at about $700^{\circ}C$ indicated the formation of the eta phase with the wasting of a gamma prime phase, which is the most important reinforced phase in precipitation hardened Ni alloys, and this resulted in the formation of precipitation free zones to decrease the strength. On the basis of thermodynamic calculation, the new Ni-based superalloy named LESS 1 (Low Eta Sigma Superalloy) was designed in this study to improve the strengthening effect and structure stability by depressing the formation of topologically close packed phases, especially sigma and eta phases at high temperature. A thermal exposure test was carried out to determine the microstructure stability of LESS 1 in comparison with IN740 at $800^{\circ}C$ for 300 hrs. The experimental results show that a needle-shaped eta phase was formed in the grin boundary and it grew to intragrain, and a precipitation free zone was also observed in IN740, but these defects were entirely controlled in LESS 1.

A Study on the Prediction of Shrinkage and Residual Stress for the HY-100 Weldment Considering the Phase Transformation (상 변태를 고려한 HY-100강 용접부의 수축 및 잔류응력 예측에 관한 연구)

  • Lee, Hee-Tae;Shin, Sang-Beom
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.42-48
    • /
    • 2007
  • For high performance and structural stability, application of high strength steel has continuously increased. However, the change of the base metal gives rise to problems with the accuracy management of the welded structure. It is attributed to the martensite phase transformation of the high strength low alloy steel weldment. The purpose of this study is to establish the predictive equation of transverse shrinkage and residual stress for the HY-100 weldment. In order to do it, high speed quenching dilatometer tests were performed to define a coefficient of thermal expansion(CTE) at the heating and cooling stage of HY-100 with various cooling rates. Uncoupled thermal-mechanical finite element(FE) models with CTE were proposed to evaluate the effect of the martensite phase transformation on transverse shrinkage and residual stresses at the weldment. FEA results were verified by comparing with experimental results. Based on the results of extensive FEA and experiments, the predictive equation of transverse shrinkage and longitudinal shrinkage force at the HY-100 weldment were formulated as the function of welding heat input/in-plane rigidity and welding heat input respectively.

Study on Bullet-Proof Performance of Multi-Layered Hybrid Armor Against 9mm FMJ Projectile (9mm 권총탄 위협을 받는 적층구조의 방탄성능 연구)

  • Lee, Jong-Gu;Kim, Siho;Kim, Gunin;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.487-495
    • /
    • 2012
  • In order to prevent the high velocity bullet from penetration, aluminum alloy and RHA(Rolled Homogeneous Armour) steel, which have a high tensile and compressive strength, are usually used as the bullet-proof armor material. Although these materials have a good bullet proof performance, but not an area density which is a weight increasing factor of bullet-proof armor. Therefore, Mg(magnesium) alloy is a promising substitute for the traditional bullet-proof armor material due to the relatively low areal density. The spatial efficiency of Mg alloy, however, is inferior to the traditional material's, which is a volume(thickness) increasing factor of bullet-proof armor. In this study, we select the multi-layered hybrid armor which consist of Ceramic, with a high strength; Mg alloy, with a low areal density; Kevlar, with a high tensile strength-to-weight ratio; in order to make up for the poor spatial efficiency of Mg alloy. By predicting V50 of the multi-layered armor against 9mm FMJ(Full Metal Jarket). we show that the multi-layered armor have the capability in improving bullet-proof performance in the respect of the areal density, but also the spatial efficiency.