Browse > Article
http://dx.doi.org/10.3740/MRSK.2003.13.10.683

Effect of Coiling Temperature and Alloying Elements on the Mechanical Properties and Precipitation Behavior in High Strength Hot Rolled Steel Sheets  

Kang, S.S. (School of Advanced Materials Engineering & RCAMD, Chonbuk National University)
Lee, O.Y. (School of Advanced Materials Engineering & RCAMD, Chonbuk National University)
Han, S.H. (Automotive Steels Research Center, POSCO Technical Research Laboratories)
Jin, K.G. (Automotive Steels Research Center, POSCO Technical Research Laboratories)
Seong, B.S. (Korea Atomic Energy Research Institute)
Publication Information
Korean Journal of Materials Research / v.13, no.10, 2003 , pp. 683-690 More about this Journal
Abstract
The high strength low alloy(HSLA) steels microalloyed with Nb, Ti and V have been widely used as the automobile parts to decrease weight of vehicles. The effects of process conditions are investigated in the aspects of the precipitation behavior and the mechanical properties of HSLA steel microalloyed with Nb and Ti using TEM, SANS and mechanical testing. When Ti was added to a 0.07C-1.7Mn steel which was coiled at $500^{\circ}C$, the specimen revealed the property of higher tensile strength of 853.1 MPa and the stretch-flangeability of 60%. The stretch-flangeability was increased up to 97.8% for coiling temperature above $700^{\circ}C$. The precipitation hardening cannot be achieved in the 0.045C-1.65Mn steel which was the lower density of fine precipitates. However, the 0.07C-1.7Mn steels containing Nb and/or Ti which was coiled at X$/^{\circ}C$ have a high precipitates density of $2${\times}$10^{ 5}$/$\mu$㎥. The high strength of these steels was attributed to the precipitation hardening caused by a large volume froction of (Ti, Nb)C precipitates with a size below 5 nm in ferrite matrix.
Keywords
HSLA steel; Tensile properties; Stretch-flangeability; Precipitation density; Small Angle Neutron Scattering (SANS);
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Morita, CAMP-ISIJ, The Iron and steel Inst, of Japan, 5, 1863 (1992)
2 K. Kunishige, CAMP-ISIJ, The Iron & Steel Inst. of Japan, 12, 428 (1999)
3 O. Kawano and J. Wakita, CAMP-ISIJ, The Iron & steel Inst, of Japan, 9, 1337 (1996)
4 NKK Patent, P2001-172745
5 U. Keiderling, A. Wiedenmann, V. Srdic, M. Winterer and H. Hahn, J. Appl. Cryst. 33, 483 (2000)   DOI   ScienceOn
6 I. Kozasu, C. Ouchi, T. Sambei and T. Okita, Micro-alloying 75' 72 (1977)
7 NKK Patent, PCT/JP2001/09469
8 B. S. Seong, Y. S. Han, C. H. Lee, J. S. Lee, K. P. Hong, K. N. Park and H. J. Kim, Appl. Phys. A74, S201 (2002)
9 J. T. Michalak and H. Hu, Met. Trans., 10A, 975 (1979)
10 J. G. Speer and S. S. Hansen, Met. Trans., 20A, 25 (1989)
11 M. J. Crooks, A. J. Garratt-Reed, J. B. Vander Sande and W. S. Owen, Met. Trans. 12A, 1999 (1981)
12 W.Roberts, H. Lidefelt and A. Sandberg, The Metals Society, 38 (1980)
13 M. Charleux, W. J. Poole, M. Militzer and Deschamps, Met. and Mater. Trans., 32A, 1635 (2001)
14 Y. R. Cho, J. H. Chung, H. H. Koo and I. B. Kim, Korean Journal of Mater. Research, 9, 1252 (1999)
15 M. Militzer, E. B. Hawbolt and T. R. Meadowcroft, Met. and Mater. Trans., 31A, 1247 (2000)
16 L. Mayer, F. Heisterkamp and W. Mueschenborn, Microalloying 75, 153 (1997)
17 E. K. Stroms and N. K. Krikorian, J. Phys. Chem, 64, 1471 (1960)   DOI
18 W. B. Lee, K. B. Kang and C. G. Park, J. of the Korean Inst. of Met. & Mater. 34, 688 (1996)
19 I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids, 19, 35 (1961)   DOI   ScienceOn