• Title/Summary/Keyword: High speed spindle

Search Result 416, Processing Time 0.025 seconds

A Study on the Thermal Behaviro of Machine Tool Spindle System (공작기계 주축계 열적거동에 관한 연구)

  • 김종관
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.28-34
    • /
    • 1999
  • According to the development of tool material and the improvement of machinability of cutting material like aluminium alloy, the higher spindle speed is needed. However, the higher speed causes the heat generation of bearings, the deformation of spindle unit parts, and the rotational accuracy of spindle to be worse. Therefore, it is essential to analyze and control the heat generation and the thermal behavior of spindle unit in order to have higher speed and better rotational accuracy. This paper shows the analogy between the analyzation of heat generation and thermal behavior of high speed spindle system by finite element method and the test results of actual temperature rise through running test, and shows the necessity of cooling the spindle and inner ring side of bearings for the thermal balance of high speed spindle system.

  • PDF

Design Tolerance of High Speed Spindle considering the Variation of Ball Contact Angle in the Angular Contact Ball Bearings (고속 주축베어링의 볼 접촉각 변동을 고려한 주축 설계공차)

  • Lee, Chan-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.609-615
    • /
    • 2010
  • Angular contact ball bearings in a high speed spindles are under the extreme conditions, such as high temperature, big centrifugal force and thrust cutting forces. So, the assembly contacts between spindle shaft and inner ring bearings, bearing housing and outer ring of bearings are occasionally unstable at high speed revolution. Furthermore, the ball contact angle of a bearing, which influence stiffness and lifetime of bearings, are changed according to loads and rotational speed. To analyze internal forces of a bearing under high speed revolution, the ball contact are calculated using nonlinear equations in consideration of rotational speed, thrust loads and raceway form. Diameter increase of inner and outer ring by influence factors, such as internal forces to inner and outer ring, centrifugal force and temperature of inner and outer rings are calculated to establish stable state in bearing assembly in high speed spindle. Finally, contribution ratio of influence factor to assembly design tolerance of inner and outer rings are shown and the stable assembly design tolerance are proposed.

An Experimental Study on the Rotational Performances of NC Lathe Spindle System (NC 선반주축 의 회전성능 향상 을 위한 실험적 연구)

  • 이형식;이봉진;송기무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.86-94
    • /
    • 1984
  • In order to improve the rotational performances of NC lathe spindle system in high speed range, a new type(Floating-type driven by V-belt)spindle system was optimally designed and experimented. Through the results of the experiments, the rotational performances of the new type spindle system was discussed and compared with the three equivalent conventional lathe spindle systems. The spindle rotational accuracy( radial error motion of spindle axis), the accelation and the temperature rise of the front spindle bearings for the non-cutting operation were considered as the spindle rotational performances. The radial error motion of the spindle axis was measured by applying the modified L.R.L. method. Compared with the equivalent conventional spindle systems, the following results were obtained. (1) The new type spindle system reduces the radial error motion of the spindle axis in high speed range(1800rpm-2000rpm). (2) The new type spindle system reduces the acceleration and the temperature rise of the spindle bearings considerably with increasing the spindle speed. It is also confirmed that, by this new type spindle system, the max. allowable speed can be increased with satisfying the spindle rotational performances.

A study on the design, manufacturing and performance evaluation of air bearing spindle for PCB drilling (PCB드릴링용 공기 베어링 스핀들의 설계 제작 및 성능평가에 관한 연구)

  • Kim Sang-Jin;Bae Myung-Il;Kim Hyeung-Chul;Kim Ki-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.29-36
    • /
    • 2006
  • Micro drilling by high-speed air bearing spindle is very useful manufacturing technology in electronic industry For the design of high speed air bearing spindle, there are considered stability of air bearing spindle, allowable load of air bearing, run out and tooling system design for micro drill's attach and remove. According to suggested details, we designed and manufactured high-speed air bearing spindle and carried out performance estimation such as run out, temperature change in running air bearing spindle, stiffness, chucking torque. Results are follows; Run out was measured under $5{\mu}m$ at air bearing spindle revolution $20,000\sim125,000rpm$. High speed air bearing spindle's temperature rose about $20^{\circ}C$ after 5 minutes from running and then was fixed. Allowable thrust load of spindle was 17kgf. Chucking torque of collet was 15kgfcm.

Development of a Static and Dynamic Analysis System for Motor-Integrated High-Speed Spindle Systems Using Timoshenko Theory and Finite Element Method (Timoshenko 이론과 유한요소법을 이용한 모터내장형 고속주축계의 정특성/동특성 해석시스템 개발)

  • 이용희;김석일;김태형;이재윤
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.11-16
    • /
    • 1998
  • Recently, the motor-integrated spindle systems have been used to simplify the machine tool structure, to improve the motion flexibility of machine tool, and to perform the high-speed machining. In this study, a static and dynamic analysis system for motor-integrated high-speed spindle systems is developed based on Timoshenko theory, finite element method and windows programming techniques. Since the system has various analysis modules related to static deformation analysis, modal analysis, frequency response analysis, unbalance response analysis and so on, it is useful in performing systematically the design and evaluation processes of motor-integrated high-speed spindle systems under windows GUI environment.

  • PDF

A Study on the Optimum Shrink-fit for High Speed Ball Bearing of Machine Tool (공작기계용 고속 볼베어링의 최적 끼워맞춤에 관한 연구)

  • Kim, Woong;Lee, Choon-Man;Hwang, Young-Kug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.94-102
    • /
    • 2010
  • The spindle is the main component in machine tools. To develop high speed machine tools, a lot of studies have been carried out for high speed spindle. Bearing is very important part in spindle. The bearing clearance is influenced by shrink fit and thermal expansion during operation. The designer must take into account the reduction of shrink fits. The aims of this study are to grasp the shrink fits and behavior of a bearing which is a deeply connected with fatigue life of bearing and performance of spindle through FEM(Finite Element Method). This paper proposed optimum value of shrink fit considering deformation of spindle and stress of fitting area using design of experiments. Thus, the proposed formula can be used to obtain bearing internal clearance.

Composite Aerostatic Spindle (복합재료 공기정압 주축부)

  • 방경근;장승환;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.134-138
    • /
    • 1999
  • For the stable operation of high speed aerostatic spindle, the low rotational inertia and high damping ratio of spindle shafts as well as high fundamental natural frequency are indispensable. Conventional steel spindles are not appropriate for very high speed operation because of their high rotational inertia and low damping ratio. In this study, the composite spindles with aerostatic bearing were designed and manufactured with carbon fiber/epoxy composite. The fundamental natural frequency of the composite spindle was evaluated through the modal testing.

  • PDF

Thermal Characteristics Analysis of a High-Speed HMC (초고속 수평형 머시닝센터의 열특성 해석)

  • 김석일;성하경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.221-226
    • /
    • 2002
  • This paper presents the thermal characteristics analysis of a high-speed HMC(horizontal machining center) with spindle speed of 30,000rpm and fried rate of 40m/min. The spindle speed is achieved by introducing angular contact ball bearings, oil-jet lubrication method, oil jacket cooling method, and so on. The spindle system is a motor-separated type composed of the main spindle and sub-spindle which are mechanically connected by the flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front to and rear bearings of the sub-spindle. The thermal analysis model of HMC is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution and heat flow under the various testing conditions related to spindle speed and feed rate.

  • PDF

A Study on Balancing of High-speed Spindle of CNC Automatic Lathe (CNC 자동선반 고속 스핀들의 밸런싱에 관한 연구)

  • Kim, Tae-Jong;Koo, Ja-Ham;Lee, Shi-Bok;Kim, Moon-Saeng
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1214-1221
    • /
    • 2009
  • A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, balancing procedure was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.