• Title/Summary/Keyword: High speed railway bridge

Search Result 255, Processing Time 0.03 seconds

A Dynamic Analysis of Wheel Forces distribution of KTX locomotive for Interaction of PSC box Girder Bridge (PSC 박스거더 교량의 상호작용에 의한 KTX 동력차의 윤하중 분포 해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Sim, Young-Woo;Yun, Jun-Kwan;Kim, Han-Su
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.680-689
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a comprehensive estimation of the dynamic response spectrum for locomotive's wheels running over a Pre-Stressed Concrete (PSC) box girder bridge on the Korea high speed railway. The wheel force spectrum with the bridge behavior are analyzed as the dynamic procedure for various running speeds (50~450km/h). The high-speed railway locomotive (KTX) is used as 38-degree of freedom system. Three displacements(vertical, lateral, and longitudinal) and three rotational components (pitching, rolling, and yawing). For one car-body and two bogies as well as five movements except pitching rotation components for four wheel axes forces are considered in the 38-degree of freedom model. Three dimensional frame element is used to model of the PSC box girder bridges, simply supported span length of 40m. The irregulation of rail-way is derived using the exponential spectrum density function under assumption of twelve level tracks conditions based on the normal probability procedure. The dynamic responses of bridge passing through the railway locomotive with high-speed analyzed by Newmark-${\beta}$ method and Runge-Kutta method are compared and contrasted considering the developed models of bridge, track and locomotive comprehensively. The dynamic analyses of wheel forces by Runge-Kutta method which are able to analyze the forces with high frequency running on the bridge and ground rail-way are conducted. Additionally, wheel forces spectrum and three rotational components of vehicle body for three typical running speeds is also presented.

  • PDF

An analytical solution to the mapping relationship between bridge structures vertical deformation and rail deformation of high-speed railway

  • Feng, Yulin;Jiang, Lizhong;Zhou, Wangbao;Lai, Zhipeng;Chai, Xilin
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.209-224
    • /
    • 2019
  • This paper describes a study of the mapping relationship between the vertical deformation of bridge structures and rail deformation of high-speed railway, taking the interlayer interactions of the bridge subgrade CRTS II ballastless slab track system (HSRBST) into account. The differential equations and natural boundary conditions of the mapping relationship between the vertical deformation of bridge structures and rail deformation were deduced according to the principle of stationary potential energy. Then an analytical model for such relationship was proposed. Both the analytical method proposed in this paper and the finite element numerical method were used to calculate the rail deformations under three typical deformations of bridge structures and the evolution of rail geometry under these circumstances was analyzed. It was shown that numerical and analytical calculation results are well agreed with each other, demonstrating the effectiveness of the analytical model proposed in this paper. The mapping coefficient between bridge structure deformation and rail deformation showed a nonlinear increase with increasing amplitude of the bridge structure deformation. The rail deformation showed an obvious "following feature"; with the increase of bridge span and fastener stiffness, the curve of rail deformation became gentler, the track irregularity wavelength became longer, and the performance of the rail at following the bridge structure deformation was stronger.

Dynamic analysis of high-speed railway train-bridge system after barge collision

  • Xia, Chaoyi;Ma, Qin;Song, Fudong;Wu, Xuan;Xia, He
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.9-20
    • /
    • 2018
  • In this paper, a framework is proposed for dynamic analysis of train-bridge systems with a damaged pier after barge collision. In simulating the barge-pier collision, the concrete pier is considered to be nonlinear-inelastic, and the barge-bow is modeled as elastic-plastic. The changes of dynamic properties and deformation of the damaged pier, and the additional unevenness of the track induced by the change of deck profile, are analyzed. The dynamic analysis model for train-bridge coupling system with a damaged pier is established. Based on the framework, an illustrative case study is carried out with a $5{\times}32m$ simply-supported PC box-girder bridge and the ICE3 high-speed train, to investigate the dynamic response of the bridge with a damaged pier after barge collision and its influence on the running safety of high-speed train. The results show that after collision by the barge, the vibration properties of the pier and the deck profile of bridge are changed, forming an additional unevenness of the track, by which the dynamic responses of the bridge and the car-body accelerations of the train are increased, and the running safety of high-speed train is affected.

Dynamic Behavior of High-Speed Railway Bridges (고속철도 교량의 동적거동)

  • 김성재;안예준;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.103-110
    • /
    • 1999
  • Dynamic responses of steel composite bridges for the Korean high-speed railway are analyzed by a modal analysis. The bridge is modeled as a simply supported beam structure and a vehicle of TGV-K is modeled using a moving load assumption. When the train is moving on a bridge, its deck shows resonance phenomenon at a critical velocity. However, it is observed that the dynamic response is greatly reduced at a special range of the span length. The results show that the reduction effect should be considered ill designing the railway bridges. A parametric study of tile dynamic response is performed for different span lengths, and specific train speeds train should be considered in designing the high speed railway bridge are suggested.

  • PDF

Dynamic problems in Korea high-speed railway (경부 고속철도 교량의 진동문제)

  • Kwark, Jong-Won;Chin, Won-Jong;Choi, Eun-Suk;Kang, Jae-Yoon;Kim, Byung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1040-1045
    • /
    • 2004
  • A study has been performed to investigate on the dynamic behavior of bridges crossed by the KTX(Korea Train eXpress). The investigated bridge is a 2-span continuous concrete box bridge with spans of 40m length named Yeon-Jae bridge. We have performed many field tests on the dynamic behaviors of a real bridge for KTX using various sensors. For this study, various sensors have been installed on the Yeon-Jae bridge located in the experimental section of the KHSR(Korea High-Speed Railway) track and tests have been performed. Through this study, it is known that effects of local modes and sleepers in the box-girder bridge for the KTX on the dynamic responses is remarkable. Therefore, in the investigation on the accelerations of the box-girder bridge, three dimensional model should be adopted in numerical analysis including the effects of sleepers. The effect of temperature on the accelerations of the bridge should be investigated in the further studies to determine the reason of excessive acceleration.

  • PDF

Dynamic Behavior of Plate Girder Railway Bridges using the Finite Element Code (유한요소프로그램을 이용한 철도판형교의 동적거동)

  • Oh Ji-Taek;Song Jae-Pil;Kim Ki-Bong;Kim Hyun-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.228-234
    • /
    • 2005
  • Investigation on the dynamic behavior of railway bridges has not performed widely to date except high-speed railway bridges. In this study, 3-dimensional model is used for the finite element analysis of plate girder railway bridges. Train loads obtained through statistical approach of the measured true train loads are used. Numerical analysis is carried out about a 18m-span bridge. This result is compared with that of the experimental test of existing plate gilder railway bridge without ballast. The good agreement was obtained through the comparison. Judging from the analysis, resonant speed of diesel locomotive train is about 120km/h. However, the resonance for the other train is not found from the analysis.

Analysis of Design Parameters for Earthwork/Bridge Transition Structure for Ultra-High Speed Running (초고속 주행시 교량/토공 접속부 보강방안의 설계변수 분석)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Lee, Kang-Myung
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.117-126
    • /
    • 2015
  • The development of railway roadbed for 600km/h train speed level is very difficult because unpredictable static and dynamic interaction occurs between the ultra-high speed train and the infrastructure. Especially, an earthwork-bridge transition zone is a section in which influential factors react, such as bearing capacity, compression, settlement, drainage, and track irregularity; these interactions can include complicated dynamic interaction. Therefore, if static and dynamic stability are secured in transition zones, it is possible to develop roadbeds for ultra-high speed railways. In the present paper, design parameters for transition reinforcement applied to present railway design criteria are analytically examined for ultra-high speed usage on a preferential basis. Design parameters are the presence of reinforcing materials, geometric shape, stiffness of materials, and so on. Analysis is focused on the deformation response of the track and running stability at ultra-high speed.

Parametric Study on Steel composite Girder bridges for HONAM High-Speed Railway Considering Criteria Requirement of Dynamic Response (호남고속철도 동적 안정성 요구 조건을 고려한 강합성 거더교의 변수 연구)

  • Cho, Sun-Kyu;Jung, Han-Ouk;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1370-1378
    • /
    • 2007
  • High speed railway bridge is affected on safety of bridge by dynamic amplification effect, when dynamic response of bridge is equal to effect cycle load for rolling stock axle according to high speed operation train. And excessive deformation of structure has negative effect on operation safety of train and comfort of passenger due to fluctuation of wheel load by torsion of track etc. and decrease of contact force on vehicle wheel-rail. To ensure the safety of track and train operation safety, it is have to perform the study on resonance and deformation of structure. That criteria and requirement of railway bridge is limitation of vertical acceleration on deck for dynamic behavior of structure, contact of vehicle wheel and rail, limitation of face distortion and rotation angle of end deck, and limitation of vertical displacement by train. Unlike KYEONGBU High Speed Railway, New constructed HONAM High Speed Railway have to applied the new requirement for dynamic behavior safety according to change of condition which is type of ballast (slab ballast), interval of track, and actual rolling stock load. Therefore, in this paper, it was conformed the dynamic characteristic due to parameter, which related with above mentioned criteria, for steel composite bridges.

  • PDF

A Study on Damping Value of Bridge in High-speed Railway (고속전철 교량 감쇠 연구)

  • 최은석;진원종;곽종원;박성용;강재윤;김영진;김병석
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.1
    • /
    • pp.23-30
    • /
    • 2001
  • The dynamic characteristics such as natural frequency, mode shape and damping ratio are most important parameters in the high-speed railway bridges rather than general roadway bridges. Also, the need to know the dynamic behavior of bridges greatly increased in recent years. In the early of 1990s, to design the high-speed railway bridges, damping ratio recommended in general code was 2.5~7.5%. However, these values were not applied in all cases. Therefore, obtaining the damping value of specific structures is important to get the correct variable for design of high-speed railway bridges. The purpose of this study is mainly to obtain the damping ratio of high-speed railway bridges. The average damping ratio of high-speed railway bridges evaluated from a field test is about 2.4%.

  • PDF

Seismic control of high-speed railway bridge using S-shaped steel damping friction bearing

  • Guo, Wei;Wang, Yang;Zhai, Zhipeng;Du, Qiaodan
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.479-500
    • /
    • 2022
  • In this study, a new type of isolation bearing is proposed by combining S-shaped steel plate dampers (SSDs) with a spherical steel bearing, and the seismic control effect of a five-span standard high-speed railway bridge is investigated. The advantages of the proposed S-shaped steel damping friction bearing (SSDFB) are that it cannot only lengthen the structural periods, dissipate the seismic energy, but also prevent bridge unseating due to the restraint effectiveness of SSDs in the large relative displacements between the girders and piers. This study first presents a detailed description and working principle of the SSDFB. Then, mechanical modeling of the SSDFB was derived to fundamentally define its cyclic behavior and obtain key mechanical parameters. The numerical model of the SSDFB's critical component SSD was verified by comparing it with the experimental results. After that, parameter studies of the dimensions and number of SSDs, the friction coefficient, and the gap length of the SSDFBs were conducted. Finally, the longitudinal seismic responses of the bridge with SSDFBs were compared with the bridge with spherical bearing and spherical bearing with strengthened shear keys. The results showed that the SSDFB can not only significantly mitigate the shear force responses and residual displacement in bridge substructures but also can effectively reduce girder displacement and prevent bridge unseating, at a cost of inelastic deformation of the SSDs, which is easy to replace. In conclusion, the SSDFB is expected to be a cost-effective option with both multi-stage energy dissipation and restraint capacity, making it particularly suitable for seismic isolation application to high-speed railway bridges.