• 제목/요약/키워드: High speed railway bridge

검색결과 255건 처리시간 0.027초

고속철도 교량/토공 접속부에서의 궤도 및 차량 거동 특성 (Characteristics of Track and Train Behaviors on High-Speed Railway Bridge/Earthwork Transiton Zone)

  • 이일화;강윤석;김은;손기준;박찬경
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.129-134
    • /
    • 2003
  • It is very important to pay careful attention to construction of bridge/earthwork transition zone for high-speed railway. The transition zone of the railway is the section which roadbed stiffness is suddenly varied. Differences in stiffness have dynamic effects and these increase the forces in the track and the extent of deformation. An abrupt change of stiffness across two adjacent track portions cause irregular settlement of roadbed, track irregularity, lack of girder bending moment and reduction of lateral resistance. Especially on high-speed railway, track irregularity of transition zone cause sincere effect to track stability and train safety. And so continuous maintenance is needed. To verify this effect and to improve transiton zone capacity, In situ test, track irregularity and train acceleration test were performed on high-speed railway bridge/earthwork Transiton Zone.

  • PDF

이동열차하중에 대한 강합성형 고속철도교의 수동형 진동제어 (Passive Vibration Control of Steel-Concrete Composite High-Speed Railway Bridge Under Moving Train Loads)

  • 고현무
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.251-258
    • /
    • 1999
  • The vibration control of bridge is studied considering the vibration characteristics of the Korean-type high-speed railway bridge. Fast nonlinear analysis is adopted as time integration method and the bridge and the train are modeled by FEM and sequentially moving constant forces respectively. Additional damping mechanism is indispensable to the Korean-type high-speed railway bridge because resonance vibration is excited under the maximum design speed. The optimal position and capacity of the damper is studied through the parametric studies, Transient vibration of the bridge is effectively controlled by such additional dampers which means that dampers play a role as structural damping. And also the maximum response of the bridge is reduced. Therefore it is verified that the increase of expected service life and the improvement of serviceability can be obtained through dampers.

  • PDF

Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests

  • Zhang, Jingyu;Zhang, Mingjin;Li, Yongle;Fang, Chen
    • Wind and Structures
    • /
    • 제28권4호
    • /
    • pp.203-213
    • /
    • 2019
  • The topography and geomorphology are complex and changeable in western China, so the railway transition section is common. To investigate the aerodynamic effect of the subgrade-tunnel transition section, including a cutting-tunnel transition section, an embankment-tunnel transition section and two typical scenarios for rail infrastructures, is selected as research objects. In this paper, models of standard cutting, embankment and CRH2 high-speed train with the scale of 1:20 were established in wind tunnel tests. The wind speed profiles above the railway and the aerodynamic forces of the vehicles at different positions along the railway were measured by using Cobra probe and dynamometric balance respectively. The test results show: The influence range of cutting-tunnel transition section is larger than that of the embankment-tunnel transition section, and the maximum impact height exceeds 320mm (corresponding to 6.4m in full scale). The wind speed profile at the railway junction is greatly affected by the tunnel. Under the condition of the double track, the side force coefficient on the leeward side is negative. For embankment-tunnel transition section, the lift force coefficient of the vehicle is positive which is unsafe for operation when the vehicle is at the railway line junction.

Series tuned mass dampers in vibration control of continuous railway bridges

  • Araz, Onur;Kahya, Volkan
    • Structural Engineering and Mechanics
    • /
    • 제73권2호
    • /
    • pp.133-141
    • /
    • 2020
  • This paper presents the applicability of series tuned mass dampers (STMDs) to reduce the multiple resonant responses of continuous railway bridges under high-speed train. The bridge is modeled by two-span Bernoulli-Euler beam with uniform cross-section, and a STMD device consisting of two TMD units installed on the bridge to reduce its multiple resonant vibrations. The system is assumed to be under the action of a high-speed train passage which is modeled as a series of moving forces. Sequential Programming Technique (SQP) is carried out to find the optimal parameters of the STMD that minimizes the maximum peak responses of the bridge. Comparisons with the results available in the literature are presented to demonstrate the effectiveness and robustness of STMD system in reducing the multiple resonant responses of the continuous railway bridges under high-speed trains.

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

실 고속열차하중을 고려한 소수주형 철도교량의 동적해석 (Dynamic Analysis for Two plate Girder Railway Bridge Considering Real High Speed Train Loads)

  • 강영종;김정훈;신주환;이명섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.960-964
    • /
    • 2011
  • High speed railway structure, contact of vehicle needs to design considering the running stability(dynamic behavior). Also, upper structure has to satisfy design standard about moving load, high speed train(KTX). So, the high speed railway structure has to satisfy the requirement of natural frequency, vertical acceleration on deck, face distortion and vertical displacement considering ride comfort, which is suggested Ho-nam high speed railway design standard. In this study, it was investigated and evaluated to the dynamic behavior for tow plate Girder railway bridge subjected to moving load considering real high speed train loads.

  • PDF

실 고속열차하중을 고려한 이중 리브 아치 교량의 동적해석 (Dynamic Analysis for a Double-Rib Arch Railway Bridge Considering Real High Speed Train Loads)

  • 강영종;김정훈;신주환;이명섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1138-1142
    • /
    • 2010
  • High speed railway structure, contact of vehicle needs to design considering the running stability(dynamic behavior). Also, upper structure has to satisfy design standard about moving load, high speed train(KTX). So, the high speed railway structure has to satisfy the requirement of natural frequency, vertical acceleration on deck, face distortion and vertical displacement considering ride comfort, which is suggested Ho-nam high speed railway design standard. In this study, it was investigated and evaluated to the dynamic behavior for a double-rib arch railway bridge subjected to moving load considering real high speed train loads.

  • PDF

고속철도 연속 PSC Box 교량에 적용한 설계기준의 현장계측에 의한 검증 (Verification of bridges Design criteria for Continuous PSC Box Bridge of High Speed Railway Using Field Test)

  • 강기동
    • 한국강구조학회 논문집
    • /
    • 제18권1호
    • /
    • pp.53-58
    • /
    • 2006
  • 본 논문은 경부고속철도 구간에 건설된 교량 중 연속 PSC Box 교량에서의 현장계측 및 동적설계 기준에 대한 검증을 수행함으로써 대상교량의 동적안정성 확보 여부를 확인하였다. 연구결과 고속선 구간의 대표적인 2연속 PSC Box 교량은 고속주행 열차하중 하에서의 동적거동에 대해 안정적인 것으로 나타났으며 교량설계 시 적용한 설계기준들은 적합한 것으로 실험적으로 검토되었다. 또한 향후 고속철도 교량설계 시 연속교 교량을 채택하는 것에 대한 합리성을 입증할 수 있었다. 또한 고유진동수를 감안한 열차속도 조정 및 교량 경간장 조정 등을 반영한다면 보다 경제적이고 최적화된 고속철도 교량 설계가 가능하리라 판단된다. 아울러 교량의 동적거동에 대한 안정성을 지속적으로 관리하기 위해 측정자료를 누적 관리하고 이를 체계적으로 분석한다면 본 연구결과는 유지관리 측면에서 고속철도 교량의 안정성 평가에 중요한 자료로 활용할 수 있을 것이다.

고속철도 교량 신축이음장치의 내구성 실험

  • 김병석;곽종원;신호상;김영진;박성용;장익순
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.24-29
    • /
    • 1998
  • To absorb the deformation of ,external live load, thermal gradient, shrinkage and creep in bridge structures and general structures, expansion joint has to be established. Especially expansion joint for high-speed railway bridge has to accomodate the static and dynamic forces and it not only has the durability of itself but also maintain the durability of structure by preventing the leakage of water. The actual used product of expansion joint for high-speed railway bridge is only ones made in France, Germany and Japan. In this study, the development process and test results of developed expansion joint are introduced which has the functional operation and durability enough to apply to high-speed railway bridges, roadway bridges and general structures. The tests consist of fatigue-durability test of 3 million times by high-speed rail load, leakage test and jack-up test for verifying the possibility of exchanging it. The performance of developed expansion joint satisfy the specification of Korea High Speed Rail Construction Authority.

  • PDF

고속철도교량의 새로운 3차원 유한요소 해석모델의 개발 (Development of a New Three-dimensional Finite Element Analysis Model of High-speed Railway Bridges)

  • 송명관;한인선;김선훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.444-451
    • /
    • 2003
  • In this study, a new three-dimensional finite element analysis model of high-speed railway bridges considering train-bridge interaction, in which various improved finite elements are used for modeling structural members, is proposed. The box-type bridge deck of a railway bridge is modeled by the NFS(Nonconforming Flat Shell) elements with 6 degrees of freedom. Track structures are idealized using the beam finite elements with the offset of beam nodes and those on Winkler foundation with two parameters. And, the vehicle model devised for a high-speed train is employed, which has an articulated bogie system. By Lagrange's equations of motion, the equations of motion of a bridge-train system can be formulated. Finally, by deriving the equations of the forces acting on a bridge considering bridge-train interaction the complete system matrices of total bridge-train system can be constructed. As numerical examples of this study, 2-span PC box-girder bridge is analyzed and results are compared with experimental results.

  • PDF