• Title/Summary/Keyword: High speed railroad

Search Result 802, Processing Time 0.027 seconds

A Study for Applying Thermoelectric Module in a Bogie Axle Bearing (철도차량 차축 베어링 발열부의 열전발전 적용에 대한 기초연구)

  • Choi, Kyungwho;Kim, Jaehoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.255-262
    • /
    • 2016
  • There has been intense research on self-diagnosis systems in railway applications, since stability and reliability have become more and more significant issues. Wired sensors have been widely used in the railway vehicles, but because of the difficulty in their maintenance and accessibility, they ar not considered for self-diagnosis systems. To have a self-monitoring system, wireless data transmission and self-powered sensors are required. For this purpose, a thermoelectric energy harvesting module that can generate electricity from temperature gradient between the bogie axle box and ambient environment was introduced in this work. The temperature gradient was measured under actual operation conditions, and the behavior of the thermoelectric module with an external load resistance and booster circuits was studied. The proposed energy harvesting system can be applied for wireless sensor nodes in railroad vehicles with optimization of thermal management.

Evaluation of Residual Stress for Thermal Damage of Railway Wheel Tread (차륜 답면의 열손상에 대한 잔류응력 평가)

  • Kwon, Seok-Jin;Seo, Jung-Won;Lee, Dong-Hyung;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.537-542
    • /
    • 2011
  • The thermo-mechanical interaction between brake block and wheel tread during braking has been found to cause thermal crack on the wheel tread. Due to thermal expansion of the rim material, the thermal cracks will protrude from the wheel tread and be more exposed to wear during the wheel/block contact than the rest of the tread surface. The wheel rim is in residual compression stress when is new. After service running, the region in the tread has reversed to tension. This condition can lead to the formation and growth of thermal cracks in the rim which can ultimately lead to premature failure of wheel. In the present paper, the thermal cracks of railway wheel, one of severe damages on the wheel tread, were evaluated to understand the safety of railway wheel in running condition. The residual stresses for damaged wheel which are applied to tread brake are investigated. Mainly X-ray diffusion method is used. Under the condition of concurrent loading of continuous rolling contact with rails and cyclic frictional heat from brake blocks, the reduction of residual stress is found to correlate well with the thermal crack initiation.

Long-term Compression Settlement of Granular (Rock/Soil Mixture) Fill Materials under Concrete Track (콘크리트궤도 하부 조립지반재료의 장기압축침하에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Lee, Jin-Wook;Lee, Jun-S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.95-106
    • /
    • 2009
  • This study was intended to identify the effect of the wetting on a long-term compression settlement of the rock/soil mixture used as fill material, depending on compaction and grading conditions. The relatively large settlement happened under the fully-submerged condition, and a repeated settlement was monitored when moisture content increased over and over again like the rainfall infiltration. In case of the materials without fine fractions or compacted in wet condition, the settlement caused by wetting was relatively low. In conclusion, the long-term compression settlement of granular (rock/soil mixture) fill material is more affected by the increase of water content and temperature change (freezing and thawing) than creep.

Analysis of the Major Design Parameters of a Pantograph-Railway Catenary System for Improving the Current Collection Quality (집전성능 향상을 위한 팬터그래프-전차선의 주요 설계 파라미터분석)

  • Cho, Yong Hyeon
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • Stiffness variations and wave propagation/reflection in railway catenaries are the primary sources of contact loss between a pantograph and a railway contact wire. This paper analyzes which design parameter is more important for 200km/h conventional rail and 300km/h high-speed rail, in order to effectively reduce the contact loss. For the high-speed rail, the wave propagation and reflection in the overhead contact lines are more influential than the stiffness variation over a span. When the high-speed rail needs to speed-up, it is necessary to develop higher strength contact wires in order to increase the wave propagation speed. In addition, the dropper clamp mass should be reduced in order to alleviate the wave reflection. However, it is noted that the increase in the tension to a messenger wire could deteriorate the current collection quality, which contrasts with expectations. For the 200km/h conventional rail, the stiffness variation over a span is more influential than the wave propagation and reflection. Therefore, shortening span length, increasing the tension in the contact wire and optimizing the location of the droppers are recommended for a smoother stiffness variation over the span.

A study on performance measurement system of traction equipment (추진장치 성능측정 시스템에 관한 연구)

  • Han, Young-Jae;Kim, Seog-Won;Kim, Young-Guk;Park, Chan-Kyoung;Choi, Jong-Sun;Kim, Jung-Su
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.170-175
    • /
    • 2003
  • The korean high speed train(350km/h), composed of 7cars that are 2 power cars, 2 motorized car and 3 trailer cars, has been developed and is under on-line test. To verify the design requirements about the functions and traction performances of this train, KRRI(Korea Railroad Research Institute) decided to evaluate traction performances of the train during on-line test. For this purpose, such as torque, velocity, voltage and current, must be measured. KRRI has developed the measurement system that can be measured vast and various signals effectively. In this paper, we introduce traction performances of korean high speed train. The traction measurement items are focused on the verification of motor block performances. Motor block are consist of 2 motor. For this test, we verified traction performances of korean high speed train.

On the Development of an Information System for Ergonomic Test and Evaluation of Locomotive Cabs (철도차량 운전실의 작업환경 개선을 위한 시험 및 평가 정보시스템의 구축)

  • Kim, Young-Min;Lee, Jae-Chon;Park, Chan-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.2
    • /
    • pp.23-33
    • /
    • 2012
  • Recent technological advances in the domestic railway industry have turned out to deliver a profound impact on the forefront of other industries as well. Furthermore, the introduction of the high-speed railway systems has made it possible to travel around our country in a day, thereby changing our life styles a lot. However, it has been well recognized that many factors can cause unanticipated accidents during the operation. One of the causes is known to be the human errors made by the train operators in locomotive cabs. The problem is getting more serious as the trains run at high speed. As such, the objective of this paper is on how to improve the work environment of the locomotive cabs. Our approach is based on the systems engineering methodology. Specifically, we first identify the context and scope of the problem to be solved. We then continue our effort in deriving the requirements set to accomplish the improvement. These results are utilized in constructing a computer-aided management system for test and evaluation intended for the improvement. The approach taken and the results obtained in this paper is expected to make a contribution on the route to keeping our nation's technologies on the competitive edges in the high-speed railway systems industry.

Analysis of Eddy Current Loss on Permanent Magnets of Interior Permanent Magnet Synchronous Motor for Railway Transit (철도차량용 매입형 영구자석 동기전동기의 영구자석 와전류 손실 분석 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.370-375
    • /
    • 2012
  • In order to apply Interior Permanet Magnet Synchronous Motor(IPMSM) to the propulsion system of the railway transit, 110kW class IPMSMs with high-power density are designed as a concentrated winding model and a distributed winding model in this study. The concentrated winding model designed in this study is 6 poles/9 slots and the distributed winding model is 6 poles/36 slots. In general, the eddy current losses in the permanent magnets of IPMSM are caused by the slot harmonics. The thermal demagnetization of the magnet by the eddy current losses at high rotational speed often becomes one of the major problems in the IPMSM with a concentrated windings especially. A design to reduce eddy current losses in permanent magnet design is important in IPMSM for the railway vehicle propulsion system which requires high-speed operation. Therefore, a method to devide the permanent magnet is proposed to reduce the eddy current losses in permanent magnet in this study. Authors analyze the variation characteristics of the eddy current losses generated in permanent magnet of the concentrated winding model by changing the number of the division of the permanent magnets.

Running Safety and Ride Comfort Prediction for a Highspeed Railway Bridge Using Deep Learning (딥러닝 기반 고속철도교량의 주행안전성 및 승차감 예측)

  • Minsu, Kim;Sanghyun, Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.375-380
    • /
    • 2022
  • High-speed railway bridges carry a risk of dynamic response amplification due to resonance caused by train loads, and running safety and riding comfort must therefore be reviewed through dynamic analysis in accordance with design codes. The running safety and ride comfort calculation procedure, however, is time consuming and expensive because dynamic analyses must be performed for every 10 km/h interval up to 110% of the design speed, including the critical speed for each train type. In this paper, a deep-learning-based prediction system that can predict the running safety and ride comfort in advance is proposed. The system does not use dynamic analysis but employs a deep learning algorithm. The proposed system is based on a neural network trained on the dynamic analysis results of each train and speed of the railway bridge and can predict the running safety and ride comfort according to input parameters such as train speed and bridge characteristics. To confirm the performance of the proposed system, running safety and riding comfort are predicted for a single span, straight simple beam bridge. Our results confirm that the deck vertical displacement and deck vertical acceleration for calculating running safety and riding comfort can be predicted with high accuracy.

The Study of Tilting Control System for Korea Tilting Vehicle (한국형 틸팅차량의 틸팅제어장치에 관한 연구)

  • Lee, Su-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.235-237
    • /
    • 2006
  • Tilting trains are now an established feature of railway operations throughout the world For intercity traffic, tilt provides operators with Increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect 30% of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the Power suppling device is very essential for stable electric power supply.

  • PDF

The Study of Performance Test of Conventional Curve Line for Korean Tilting Train (한국형 틸팅열차 곡선부 성능시험 연구)

  • Lee, Su-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1211_1212
    • /
    • 2009
  • Tilting trains are now an established feature of railway operations throughout the world. For intercity traffic, tilt provides operators with increasing speeds, and therefore enhanced competitiveness, on existing routes where insufficient traffic or a lack of funds precludes the construction of a dedicated new high-speed railway. Appling the tilting train, we can expect 30% of speed up on existing lines, but the stability of the electric current would be low because of tilting the train. Also, the spark between the catenary and pantagraph cause environmental problems such as noise, radio wave malfunction. Therefore, the tilting on pantagraph for the power suppling device is very essential for stable electric power supply.

  • PDF