• Title/Summary/Keyword: High speed railroad

Search Result 802, Processing Time 0.028 seconds

Case Study on the detailed standard setting and Application for QRA in Honam high speed railway tunnel (호남고속철도터널의 정량적 위험도 분석(QRA)을 위한 세부기준수립 및 적용사례)

  • Kim, Seon-Hong;Moon, Yeon-Oh;Seok, Jin-Ho;Kim, Ki-Lim;Kim, Chan-Dong;Yoo, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.10a
    • /
    • pp.249-260
    • /
    • 2008
  • Although the accident rate is lower than the road tunnel, fire in railway tunnel can bring large damage of human life. In the high speed railway tunnel, the possibility of the railway-disaster (fire) is growing in consideration of the speedy railway and the tunnel length. For that reason, MLTM (Ministry of Land, Transport and Maritime Affairs) published "Rules about the Safety Standard of Railroad (2005.10.27)" and "The Detailed Safety Standard of Railroad (2006.9.22)". According to those, QRA(Quantitative Risk Analysis) technique is recommended to be applied to railway tunnel design which is longer than 1km for assuring the safety function and estimating the risk. However, it is difficult to perform the disaster prevention design due to lack of the detailed standards about event scenario, fire intensity, incidence rate of accidents etc. Therefore, This paper introduces the case of tunnel design for disaster prevention of the Honam high speed railway including the detailed standards of QRA and reasonable safety facilities.

  • PDF

Analytical Behavior of Concrete Derailment Containment Provision(DCP) according to Train Impact Loading (열차 충돌하중에 대한 콘크리트 일탈방호시설물(DCP)의 해석적 거동 검토)

  • Yi, Na-Hyun;Kim, Ji-Hwan;Kang, Yun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.604-613
    • /
    • 2018
  • In recent years, numerous train derailment accidents caused by deterioration and high speed technology of railways have increased. Guardrails or barriers of railway bridges are installed to restrain and prevent the derailment of the train body level. On the other hand, it can result in a high casualties and secondary damage. Therefore, a Derailment Containment Provision (DCP) within the track at the wheel/bogie level was developed. DCP is designed for rapid installation because it reduces the impact load on the barrier and inertia force on the steep curve to minimize turnover, fall, and trespass on the other side track of the bridge. In this paper, DCP was analyzed using LS-Dyna with a parameter study as the impact loading location and interface contact condition. The contact conditions were analyzed using the Tiebreak contact simulating breakage of material properties and Perfect bond contact assuming fully attached. As a result, the Tiebreak contact behaved similarly with the actual behavior. In addition, the maximum displacement and flexural failure was generated on the interface and DCP center, respectively. The impact analysis was carried out in advance to confirm the DCP design due to the difficulties of performing the actual impact test, and it could change the DCP anchor design as the analysis results.

A Study on the Design of Controller for Speed Control of the Induction Motor in the Train Propulsion System-1 (열차추진시스템에서 유도전동기의 속도제어를 위한 제어기 설계에 대한 연구-1)

  • Lee, Jung-Ho;Kim, Min-Seok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • Electric railroad systems consist of supply system of electric power and electric locomotive. The electric locomotive is adapted to high speed driving and mass transportation due to obtaining high traction force. The electric locomotive is operated by motor blocks and traction motors. Train speed is controlled by suppling power from motor blocks to traction motors according to reference speed. Speed control of the electric locomotive is efficient by spending minimum energy between motor blocks and traction motors. Recently, induction motors have been used than DC and synchronized motors as traction motors. Speed control of induction motors are used by vector control techniques. In this paper, speed of the induction motor is controlled by using the vector control technique. Control system model is presented by using Simulink. Pulse is controlled by PI and hysteresis controller. IGBT inverter is used for real-time control and system performance is demonstrated by simulating the induction motor which has 210[kW] on the output power.

A Study on Test Technology Analysis for Railway System (철도분야 시험기술 분석에 관한 연구)

  • Han, Young-Jae;Park, Chan-Kyoung;Hwang, Jong-Gyu;Kim, Young-Guk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.722-728
    • /
    • 2017
  • As the demand for high-speed railway, light railway, and metropolitan railway is increasing, the demand for safe and comfortable railways is increasing. The evaluation technology for a railway system manufactured according to this trend is becoming more important. This study examined the domestic and foreign technology trends through patent analysis of the railway test technology. To accomplish this, the patents filed in Korea, Europe, and the United States since 1990 were analyzed using Thomson Innovation DB. First, the technology was classified as a component test, combined test, and on-line test. Through patent analysis, the technology trends in the railway test technology and how the technological progress has been made from the past to the present were reviewed. In addition, through an analysis of the country and main applicant, this study examined the countries and applicants that are actively developing technologies. In addition, the countries that have secured technology related to the test technology were studied through an analysis of the market security index and the influence index. Through this analysis, this study analyzed the trend of the test technology in the railway area.

Development of High Speed Train Performance Simulation Software (고속전철 차량시스템의 주행성능 예측 소프트웨어의 개발)

  • Jeong, Gyeong-Ryeol;Kim, Sang-Heon;Park, Su-Hong;Lee, Jang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.134-143
    • /
    • 2000
  • A train performance simulation (TPS) software is a computer program that simulates the operation of a train system over a specified railway route and it is widely used in railroad operation and research applications. Numerical and graphical results from the simulation software, which is developed in this study, provide information on such performance variables as travel time. running speed, energy consumption at a specific time interval and in overall service time as the train moves along the route. Three types of input data are required for a computer simulation: track information, train information, and running conditions. The simulation of train performance starts with several simple mathematical models including train configuration. traction efforts, running resistance. and braking requirements. Based on the basic specifications of Korean High Speed Railway, System. this study, puts a focus on the estimation and assessment of train performance comparing. the specific train configurations of KEST20/11. CPLE20/10. PROP20/10, which are proposed from the previous G7 projects.

The Study on Shield Moving ECB with PM for Application of Railway Vehicle (영구자석을 이용한 Shield moving형 와전류 제동기의 철도시스템 적용연구)

  • Lee, Chang-Mu;Han, Kyung-Hee;Choi, Yu-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1737-1741
    • /
    • 2014
  • The railway ECB(Eddy Current Brake) is used for high speed vehicle of railway like as TGV, ICE, JR-500 because it has stable braking force at high speed. But it is not effective at low speed and it is difficult to save energy due to the excitation of electro-magnet. Although ECB with permanent magnet is used for roller-coaster, it can not control the braking force without clutch. In this paper, the shield moving ECB with PM is proposed for application of railway vehicle. The angle of shield can be changed for various braking force. It changes the flux amount from PM, then the braking force will be reduced. The brake of 800W is simulated by using the software, "Ansoft Maxwell". The characteristics of braking will be shown by the shapes of magnet, disk and various speeds.

Noise Prediction Based on Analysis of Noise Measured Near the Turnout System of Existing Railroad

  • Eum, Ki-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1E
    • /
    • pp.23-28
    • /
    • 2009
  • At the crossings of turnout systems, noise is generated by the impact of train on the connection points. However, rapid movement changes between rail and wheels on connection point are inevitable on existing turnout section which may cause safety concern as well as noise problem caused by repeated impact load by passing train. And given the turnout is a complicated system which combines various functions such as rolling stock, trackbed, signaling, communication and electrical system, it's very difficult to expect to improve the overall performance of the turnout in such a way of optimizing only particular part of such integrated system. Since the turnout is the only movable section among the integrated parts and has complicated structure that inevitably brings about quick and sudden movement, safety has been still put on the top of the list. This study was aimed at comparing and analyzing the noise data obtained around the turnout of existing railway, by categorizing them into tilting train, high speed train and traditional train, and by distance, speed and type of turnout. And based on the data measured, the forecast of noise level when tilting train accelerates around a turnout was conducted in the study.

A Study on Characteristics of Overhead Rigid Conductor System for Developing the High-speed System up to 250km/h (250km/h급 강체전차선로 시스템 개발을 위한 R-BAR 특성 고찰)

  • Bae, Sang-Joon;Jang, Kwang-Dong;Lee, Ki-Won;Park, Youn-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.492-497
    • /
    • 2015
  • An overhead rigid conductor system is mainly applied to the subway and recently studies on the rigid system have been conducted for applications such as tunnels of high-speed line and speed improvement of a conventional lines up to 250km/h. Power feeding performance which is the most important in a rigid system can be measured by contact force and characteristics of this contact force are related to the shape and material of the R-BAR. In this paper, we analyze the measurements of contact force, current heating temperature, impedance of a rigid conductor which was developed in Korea, after that we compare static characteristics of home and abroad rigid conductors which have various shapes and materials.

Evaluation of the Roadbed Behavior During Tilting-train Operation in Curved Track Using Numerical Analysis (틸팅차량의 곡선부 운행시 수치해석을 이용한 노반거동 평가)

  • Jeon, Sang-Soo;Eum, Gi-Young;Kim, Jae-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.115-126
    • /
    • 2007
  • The tilting-train is very attractive to the railroad users in the world because it runs with high speed in curved track using pre-existing infrastructure. The tilting-train has a unique allowable speed and mechanism expecially in curved track. Therefore, it should be evaluated in terms of the stability of the train operation and roadbed. In this study, when the tilting-train is being operated with the allowable speed, the behavior of the roadbed is evaluated by examining the settlement and bearing capacity of the roadbed. Additionally, the stability of the roadbed is estimated in the condition of soft roadbed influenced by the weather effects and cyclic train loading. The numerical results show that the roadbed settlements satisfy the allowable settlement when Young's moduli of the upper roadbed and in-situ soil are more than $2,300t/m^2\;and\;3,300t/m^2$, respectively, in the continuous welded rail (CWR) and $3,800t/m^2\;and\;4,600t/m^2$, respectively, in the rail joint.

Train-Structure Dynamic Interaction Analysis of The Bridge Transition Considering Track Irregularity (궤도틀림을 고려한 교대접속부의 열차상호동적거동해석)

  • Choi, Chan-Yong;Kim, Hun-Ki;Chung, Keun-Young;Yang, Sang-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, track dynamic interaction characteristics caused by the vehicle running through transitional section such as bridge abutments were studied using the finite element analysis program. The geometric condition of track was generated by trigonometric function and allowable maximum track irregularity is determined by KORAIL track maintenance criteria. The sub-infrastructure under rail fastener system was modelled by 3D solid elements. To reduce computational cost only half track line is numerically considered and the roller boundary condition was applied to each side of model. In this study, the vehicle-track dynamic interaction analysis was carried out for standard Korean transition section of concrete track and the dynamic behaviors were investigated. The dynamic characteristics considered are wheel load variation, vertical acceleration at body, and maximum Mises stress at each part of transitional section.