• Title/Summary/Keyword: High speed network

Search Result 1,775, Processing Time 0.03 seconds

Maximum Torque Control of IPMSM Drive with LM-FNN Controller (LM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어)

  • Nam, Su-Myeong;Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.566-569
    • /
    • 2005
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM drive using artificial intelligent(AI) controller. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AI controller. This paper is proposed speed control of IPMSM using learning mechanism fuzzy neural network(LM-FNN) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled LM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also. this paper is proposed the experimental results to verify the effectiveness of AI controller.

  • PDF

Maximum Torque Control of IPMSM Drive with ALM-FNN Controller (ALM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어)

  • Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.110-114
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. In this paper maximum torque control of IPMSM drive using artificial intelligent(AI) controller is proposed. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AI controller. This paper is proposed speed control of IPMSM using adaptive learning mechanism fuzzy neural network(ALM-FNN) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the experimental results to verify the effectiveness of AI controller.

Development Hi-DPI Algorithm for High Speed Packet Filtering of Anti-DDoS based on HW (하드웨어 기반 Anti-DDoS 대응 장비 고속 패킷 필터링을 위한 Hi-DPI 알고리즘 연구)

  • Kim, Jeom Goo
    • Convergence Security Journal
    • /
    • v.17 no.2
    • /
    • pp.41-51
    • /
    • 2017
  • The explosive increase in the range of Internet usage gradually makes the speed and capacity of network high-speed, rapidly evolving it into mass storage. Accordingly, network equipment such as switch and router are coping with it through hardware-based rapid technological evolution, but as the technological development of the most basic and essential network security system in the hyper-connected society requires frequent alterations and updates about the security issues and signatures of tens of thousands, so it is not easy to overcome the technical limitations based on the software. In this paper, to improve problems in installing and operating such anti-DDoS devices, we propose a Hi-DPI algorithm best reflecting the hardware characteristics and parallel processing characteristics of FPGA (Field Programmable Gate Array), and would verify the practicality.

Development of Standard Specification of Korea Radio based Train Control System(KRTCS-2) for Conventional & High Speed Railway (일반·고속철도용 무선기반 열차제어시스템(KRTCS-2) 표준사양 개발)

  • Kim, Chan-ho;Park, Jong-won;Lee, Kang-gyoo;Sung, Dong-il;Yun, Hak-sun
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.736-743
    • /
    • 2016
  • In accordance with the trend of higher speed and automation, the Train Control System is building on the technology of control methods using radio in the technology of exchanging information by wire, toward a wireless communication method that will be applied using LTE-R radio communication technology with $4^{th}$ generation LTE mobile communication a $2^{nd}$ generation GSM-R. Therefore, a standard specification suitable for the Korea Radio based Train Control System-2(below KRTCS-2) for the 350km/h class using wireless communication is created; a prototype based on the standard specification is installed on a high-speed train and is installed on a test section(Ik san-Jeong eup) on the Honam high speed line to ensure the reliability and safety of the standard specifications, which are verified through various performance tests. In the future, the standard specification that has been established as a national railway standard, and the standard specifications will be commercialized by applying the train control system to conventional and High speed railway lines.

Effects of the Common Earth Network on the Traction Return Current in $2{\times}25 kV$ Power Supply System ($2{\times}25 kV$급전 방식에서의 공동 접지망 적용에 따른 귀선 전류의 영향)

  • Kim, Yong-Gyu;Ryu, Chang-Geun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.509-514
    • /
    • 2002
  • The aim of this research is to find out how the common earth network affects the level of the traction return current in the $2{\times}25 kV$ Power Supply System. The traction return current plays a significant role in the operation of the facilities near the rails. It is shown that the common earth network in the $2{\times}25 kV$ power supply system not only minimizes the level of the traction return current, but also increases the safety of the working crew on the railways. In order to determine the relationship between common earth network and the traction return current, we investigated the earth system of the Gyongbu High Speed Line that is constructed following the SNCF regulations. We carried out the field test in the Osong station. The results of the test show that the common earth network minimizes the effect of the traction return current. We also find that the simulated results are very similar to the test results. We concluded that the results of the test can be applied for the rest of the Gyongbu High Speed Line under construction.

Message Routing Method for Inter-Processor Communication of the ATM Switching System (ATM 교환기의 프로세서간통신을 위한 메시지 라우팅 방법)

  • Park, Hea-Sook;Moon, Sung-Jin;Park, Man-Sik;Song, Kwang-Suk;Lee, Hyeong-Ho
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.289-440
    • /
    • 1998
  • This paper describes an interconnection network structure which transports information among processors through a high speed ATM switch. To efficiently use the high speed ATM switch for the message-based multiprocessor, we implemented the cell router that performs multiplexing and demultiplexing of cells from/to processors. In this system, we use the expanded internal cell format including 3bytes for switch routing information. This interconnection network has 3 stage routing strategies: ATM switch routing using switch routing information, cell router routing using a virtual path identifier (VPI) and cell reassembly routing using a virtual channel indentifier (VCI). The interconnection network consists of the NxN folded switch and N cell routers with the M processor interface. Therefore, the maximum number of NxM processors can be interconnected for message communication. This interconnection network using the ATM switch makes a significant improvement in terms of message passing latency and scalability. Additionally, we evaluated the transmission overhead in this interconnection network using ATM switch.

  • PDF