• Title/Summary/Keyword: High speed model test

Search Result 541, Processing Time 0.03 seconds

Machine Learning Based Structural Health Monitoring System using Classification and NCA (분류 알고리즘과 NCA를 활용한 기계학습 기반 구조건전성 모니터링 시스템)

  • Shin, Changkyo;Kwon, Hyunseok;Park, Yurim;Kim, Chun-Gon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • This is a pilot study of machine learning based structural health monitoring system using flight data of composite aircraft. In this study, the most suitable machine learning algorithm for structural health monitoring was selected and dimensionality reduction method for application on the actual flight data was conducted. For these tasks, impact test on the cantilever beam with added mass, which is the simulation of damage in the aircraft wing structure was conducted and classification model for damage states (damage location and level) was trained. Through vibration test of cantilever beam with fiber bragg grating (FBG) sensor, data of normal and 12 damaged states were acquired, and the most suitable algorithm was selected through comparison between algorithms like tree, discriminant, support vector machine (SVM), kNN, ensemble. Besides, through neighborhood component analysis (NCA) feature selection, dimensionality reduction which is necessary to deal with high dimensional flight data was conducted. As a result, quadratic SVMs performed best with 98.7% for without NCA and 95.9% for with NCA. It is also shown that the application of NCA improved prediction speed, training time, and model memory.

Design and Implementation of Asynchronous Memory for Pipelined Bus (파이프라인 방식의 버스를 위한 비 동기식 주 기억장치의 설계 및 구현)

  • Hahn, Woo-Jong;Kim, Soo-Won
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.45-52
    • /
    • 1994
  • In recent days low cost, high performance microprocessors have led to construction of medium scale shared memory multiprocessor systems with shared bus. Such multiprocessor systems are heavily influenced by the structures of memory systems and memory systems become more important factor in design space as microprocessors are getting faster. Even though local cache memories are very common for such systems, the latency on access to the shared memory limits throughput and scalability. There have been many researches on the memory structure for multiprocessor systems. In this paper, an asynchronous memory architecture is proposed to utilize the bandwith of system bus effectively as well as to provide flexibility of implementation. The effect of the proposed architecture if shown by simulation. We choose, as our model of the shared bus is HiPi+Bus which is designed by ETRI to meet the requirements of the High-Speed Midrange Computer System. The simulation is done by using Verilog hardware decription language. With this simulation, it is explored that the proposed asynchronous memory architecture keeps the utilization of system bus low enough to provide better throughput and scalibility. The implementation trade-offs are also described in this paper. The asynchronous memory is implemented and tested under the prototype testing environment by using test program. This intensive test has validated the operation of the proposed architecture.

  • PDF

Aerodynamic Forces Acting on Yi Sun-sin Bridge Girder According to Reynolds Numbers (레이놀즈수에 따른 이순신대교 거더에 작용하는 공기력의 변화)

  • Lee, Seung Ho;Yoon, Ja Geol;Kwon, Soon Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.93-100
    • /
    • 2013
  • The objective of present study is to investigate the sensitivity of aerostatic force coefficients of twin box girder of Yi Sun-sin Bridge according to the Reynolds numbers. This paper presents the 1:30 scale sectional model tests conducted at high speed wind tunnel in Korea Air Force Academy. Comparison with results at low Reynolds number obtained in KOCED Wind Tunnel Center in Chonbuk National University is also provide. The Reynolds number dependency of aerodynamic force coefficients were observed at present streamlined twin box girder. The drag coefficient revealed significant decrease of nearby 23% at supercritical region. The boundary layer trip strip was found to reduce the Reynolds number dependency of aerodynamic forces by fixing the location of flow transition.

The Earth Pressure Distribution of Crib Wall (Crib Wall의 토압분포)

  • Oh, Sewook;Kwon, Youngcheul;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.41-48
    • /
    • 2006
  • Crib wall is one of the segmental grid retaining walls using headers and stretchers to establish the framework of the wall. In this method, grids formed by the intersection of headers and stretchers are generally filled with the gravel to maintain the weight of the wall. Therefore, the construction can be carried out with higher speed and much economically when compared with the concrete retaining wall. Furthermore, it has high drain capacity, and environmentally friendly aspects also have been pointed out because the possibility of the planting at the front of the wall. However, in the crib wall method, the relative movement between the individual headers and stretchers was generally recognized, and stress redistribution in the gravel filling was also observed when subjected to the external loading and self-weight of filling. Therefore, it has been thought that the distribution of the earth pressure in the crib wall system differ from that of the concrete retaining wall. In this study, the surcharge tests using the scaled model crib wall was carried out to observe the distribution of the earth pressure in the segmental grid retaining wall. The earth pressure was measured in the six specified height of wall, and the distribution of the pressure was analyzed. Furthermore, the earth pressure by computation or by the test using the concrete retaining wall was also considered to make comparison.

  • PDF

Dynamic Droop-based Inertial Control of a Wind Power Plant

  • Hwang, Min;Chun, Yeong-Han;Park, Jung-Wook;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1363-1369
    • /
    • 2015
  • The frequency of a power system should be maintained within the allowed limits for stable operation. When a disturbance such as generator tripping occurs in a power system, the frequency is recovered to the nominal value through the inertial, primary, and secondary responses of the operating synchronous generators (SGs). However, for a power system with high wind penetration, the system inertia will decrease significantly because wind generators (WGs) are operating decoupled from the power system. This paper proposes a dynamic droop-based inertial control for a WG. The proposed inertial control determines the dynamic droop depending on the rate of change of frequency (ROCOF). At the initial period of a disturbance, where the ROCOF is large, the droop is set to be small to release a large amount of the kinetic energy (KE) and thus the frequency nadir can be increased significantly. However, as times goes on, the ROCOF will decrease and thus the droop is set to be large to prevent over-deceleration of the rotor speed of a WG. The performance of the proposed inertial control was investigated in a model system, which includes a 200 MW wind power plant (WPP) and five SGs using an EMTP-RV simulator. The test results indicate that the proposed scheme improves the frequency nadir significantly by releasing a large amount of the KE during the initial period of a disturbance.

Simulation of the Loudness Recruitment using Sensorineural Hearing Impairment Modeling (감음신경성 난청의 모델링을 통한 라우드니스 누가현상의 시뮬레이션)

  • Kim, D.W.;Park, Y.C.;Kim, W.K.;Doh, W.;Park, S.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.63-66
    • /
    • 1997
  • With the advent of high speed digital signal processing chips, new digital techniques have been introduced to the hearing instrument. This advanced hearing instrument circuitry has led to the need or and the development of new fitting approach. A number of different fitting approaches have been developed over the past few years, yet there has been little agreement on which approach is the "best" or most appropriate to use. However, when we develop not only new hearing aid, but also its fitting method, the intensive subject-based clinical tests are necessarily accompanied. In this paper, we present an objective method to evaluate and predict the performance of hearing aids without the help of such subject-based tests. In the hearing impairment simulation (HIS) algorithm, a sensorineural hearing impairment model is established from auditory test data of the impaired subject being simulated. Also, in the hearing impairment simulation system the abnormal loudness relationships created by recruitment was transposed to the normal dynamic span of hearing. The nonlinear behavior of the loudness recruitment is defined using hearing loss unctions generated from the measurements. The recruitment simulation is validated by an experiment with two impaired listeners, who compared processed speech in the normal ear with unprocessed speech in the impaired ear. To assess the performance, the HIS algorithm was implemented in real-time using a floating-point DSP.

  • PDF

A Study on the Design of Switch for High Speed Internet Communication Network (고속 인터넷 통신망을 위한 스위치 설계에 관한 연구)

  • 조삼호
    • Journal of Internet Computing and Services
    • /
    • v.3 no.3
    • /
    • pp.87-93
    • /
    • 2002
  • A complex network and a parallel computer are made up of interconnected switching units. The role of a switching unit is to set up a connection between an input port and an output port, according to the routing information. We proposed our switching network with a remodeled architecture is a newly modified Banyan network with eight input and output ports. We have analysed the maximum throughput of the revised switch. Our analyses have shown that under the uniform random traffic load, the FIFO discipline is limited to 70%, The switching system consists of an input control unit, a switch unit and an output control unit. Therefore the result of the analyses shows that the results of the networking simulation with the new switch are feasible and if we adopt the new architecture of the revised model of the Banyan switch, the hardware complexity can be reduced. The FIFO discipline has increased by about 11% when we compare the switching system with the input buffer system. We have designed and verified the switching system in VHDL using Max+plusII. We also designed our test environment including micro computers, the base station, and the proposed architecture. We proposed a new architecture of the Banyan switch for BISDN networks and parallel computers.

  • PDF

Prediction of Lift Performance of Automotive Glass Using Finite Element Analysis (유한요소해석을 통한 자동차용 글라스의 승강성능 예측)

  • Moon, Hyung-Il;Kim, Heon-Young;Choi, Cheon;Lee, In-Heok;Kim, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1749-1755
    • /
    • 2010
  • The performance of power window system was decided by driving characteristics of the window regulator part and reaction by the glass run. The performance of power window system usually has been predicted by experimental methods. In this paper, an analytical method using the explicit code was suggested to overcome the limit of the experimental methods. The friction coefficient of glass run was obtained by the friction test at various conditions and the Mooney-Rivlin model was used. Also, a mechanism of window regulator consisted of the fast belt system and the slip ring elements. And, we conducted the analysis considering characteristic of a motor and obtained the lifting speed of automotive glass with high reliability

High Lift Device Design Optimization and Wind Tunnel Tests (고양력장치 설계 최적화 및 풍동시험)

  • Lee, Yung-Gyo;Kim, Cheol-Wan;Cho, Tae-Hwan
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.78-83
    • /
    • 2010
  • In the present paper, a flap was optimized to maximize the lift. A 2-element fowler flap system was utilized for optimization with an initial shape of general aviation airfoil and a flap shape designed by Wentz. Response surface method and Hicks-Henne shape function were implemented for optimization. 2-D Navier-Stokes method was used to solve flow field around aGA(W)-1 airfoil with a fowler flap. Commercial programs including Visual-Doc, Gambit/Tgridand Fluent were used. Upper surface shape and the flap gap were optimized and lift for landing condition was improved considerably. The original and optimized flaps were tested in the KARI's 1-m low speed wind tunnel to examine changes in aerodynamic characteristics. For optimized flap tests, the similar trend to prediction could be seen but stall angle of attack was lower than what was expected. Also, less gap than optimized design delayed stall and produced better lift characteristics. This is believed to be the effect of turbulence model.

Uncertainty Quantification of Propulsion System on Early Stage of Design (추진체계 개념설계단계에서 불확실성 고려방법에 대한 연구)

  • Ahn, Joongki;Um, Ki-in;Lee, Ho-il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.258-265
    • /
    • 2017
  • At the early stage of the development of high speed propulsion systems, the designers suffer from the lack of both the quantity and the quality of test data. In that situation, the associated uncertainties could not be modeled as probabilistic distribution since probabilistic modelling requires large amount of data. In this paper, instead, the information provided by experts based on their experience and engineering knowledge was used to model uncertainty using the evidence theory. In designing the DCR(Dual Combustion Ramjet) engine, the combustion efficiencies, not well understood and little data existing, are assumed to have been provided by experts. And the uncertainties are quantified by Evidence theory. The quantified uncertainties are incorporated into the optimization. The design variables, area of inlet and area of combustor exit, have been found while satisfying reliability margins of thrust and thermal choking. The results show a reasonable design of the engine under the uncertain circumstances.

  • PDF