• Title/Summary/Keyword: High speed model test

Search Result 541, Processing Time 0.028 seconds

Development of Magnus Effect Measurement Technique for Spinning Projectile (회전 발사체용 마그너스 효과 특정기법의 개발)

  • Oh, Se-Yoon;Kim, Sung-Cheol;Lee, Do-Kwan;Choi, Joon-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2007
  • The Magnus effect measurement apparatus was designed and built for spinning wind tunnel model which would simulate the rotation of projectiles. Prior to the high speed test, the ground functional test and the low speed test were carried out in the Agency for Defense Development's Low Speed Wind Tunnel(ADD-LSWT) at spin rates from about 6,000 to 10,000 rpm. Magnus force and moment were measured on the spinning projectile model at velocity of 100 m/s. It was shown that the Magnus force and moment were linear function of spin parameter. The test results were compared with Magnus test run on the same configuration in the Arnold Engineering Development Center's Propulsion Tunnel 4T(AEDC-4T).

Cavitation Test at High Reynolds Number Using a Partial Propeller Blade Model (부분 프로펠러 날개 모형을 이용한 높은 레이놀즈 수에서의 공동시험)

  • Choi, Gil-Hwan;Chang, Bong-Jun;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.569-577
    • /
    • 2009
  • As the scale factor of model propellers utilized in cavitation test is about 40, it is difficult to find out practical countermeasures against the small area erosions on the blade tip region throughout model erosion tests. In this study, a partial propeller blade model was used for the observation of cavitation pattern for the eroded propeller. A partial propeller blade model was manufactured from 0.7R to tip with expanded profile and with adjustable device of angle of attack. Reynold's number of a partial propeller blade model is 7 times larger than that of a model propeller. Also, anti-singing edge and application of countermeasures to partial propeller blade model which produced in large scale can be more practical than a model propeller. For the observation of cavitation at high Reynold's number, high speed cavitation tunnel was used. To find out the most severe erosive blade position during a revolution, cavitation observation tests were carried out at 5 blade angle positions.

Evaluation of Resistance Performance of a Racing Boat using Unmanned High-speed Towing Carriage

  • Shin Jeongil;Yang Jiman;Park Rowon;Kim Jaesung;Kim Hyochul
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2005
  • A light-weight cantilever type towing carriage was devised and installed in the towing tank at Seoul National University. Wireless measurement devices were also provided for appropriate data acquisition during high-speed towing tests. With the new carriage system, a series of model tests were performed to investigate the hydrodynamic characteristics of the racing boat in the towing tank and the resistance test results had sufficient accuracy so that they could be used in the development of a high speed planning hull.

Safety Assessment of a Metal Cask under Aircraft Engine Crash

  • Lee, Sanghoon;Choi, Woo-Seok;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.505-517
    • /
    • 2016
  • The structural integrity of a dual-purpose metal cask currently under development by the Korea Radioactive Waste Agency (KORAD) was evaluated, through numerical simulations and a model test, under high-speed missile impact reflecting targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from literature. In the impact scenario, a missile flying horizontally hits the top side of the cask, which is freestanding on a concrete pad, with a velocity of 150 m/s. A simplified missile simulating a commercial aircraft engine was designed from an impact loade-time function available in literature. In the analyses, the dynamic behavior of the metal cask and the integrity of the containment boundary were assessed. The simulation results were compared with the test results for a 1:3 scale model. Although the dynamic behavior of the cask in the model test did not match exactly with the prediction from the numerical simulation, other structural responses, such as the acceleration and strain history during the impact, showed very good agreement. Moreover, the containment function of the cask survived the missile impact as expected from the numerical simulation. Thus, the procedure and methodology adopted in the structural numerical analyses were successfully validated.

A Column-Aware Index Management Using Flash Memory for Read-Intensive Databases

  • Byun, Si-Woo;Jang, Seok-Woo
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.389-405
    • /
    • 2015
  • Most traditional database systems exploit a record-oriented model where the attributes of a record are placed contiguously in a hard disk to achieve high performance writes. However, for read-mostly data warehouse systems, the column-oriented database has become a proper model because of its superior read performance. Today, flash memory is largely recognized as the preferred storage media for high-speed database systems. In this paper, we introduce a column-oriented database model based on flash memory and then propose a new column-aware flash indexing scheme for the high-speed column-oriented data warehouse systems. Our index management scheme, which uses an enhanced $B^+$-Tree, achieves superior search performance by indexing an embedded segment and packing an unused space in internal and leaf nodes. Based on the performance results of two test databases, we concluded that the column-aware flash index management outperforms the traditional scheme in the respect of the mixed operation throughput and its response time.

Dynamic behavior of Track/Roadbed with Loading Frequency in Concrete Track through Full Scale Model Test (실대형 실험을 이용한 가진주파수 변화에 따른 콘크리트궤도의 동적평가)

  • Choi, Chanyong;Kim, Hunki;Eum, Kiyoung;Kang, Yunsuk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.3
    • /
    • pp.39-47
    • /
    • 2014
  • In this study, the full scale model tests were performed with track-roadbed system such as Ho-nam high speed railway. The measured data gives good similar a roadbed pressure with equivalent depth to the Odemark's theory. In the case of earth pressures have a under 50 kPa at upper-subgrade applying 330 kN static loading. Results of cyclic loading tests did not differ significantly from those of static loading test. The elastic displacement at HSB layer has a level of 1/100 compared to the 1 mm that it was evaluation criteria for speed up of High Speed Railway. Elastic displacement at subgrade layer was measured a level of 1/175. The dynamic characteristics of track-roadbed with loading frequency level were linearly increased under 35 Hz, while the wheel loading, displacement and acceleration of roadbed were decreased loading frequency above 35 Hz.

Air Cooling Characteristics of a High Speed Spindle System for Machine Tools (공작기계용 고속주축계의 공기냉각특성에 관한 연구)

  • Choi, Dae-Bong;Kim, Suk-Il;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.123-128
    • /
    • 1994
  • A high speed spindle system for machine tools can be used to reduce the machining time, to improve the machining accuracy, to perform the machining of light metals and hard materials, and to unite the cutting and grinding processes. In this study, a high speed spindle system is developed by applying the oil-air lubrication method, angular contact ball bearings, injection nozzles with dual orifices, cooling jacket and so on. And an air cooling experiment for evaluating the performance of the spindle system is carried out. Especially, in ofder to establish the air cooling conditions related to the development of a high speed spindle system, the effects of cooling air pressure, oil supply rate, air supply rate and rotational spindle speed are studied and discussed on the bearing temperature rise and frictional torque. Also the effects of cooling air pressure, rotational spindle speed and spindle system structure is investigated on the bearing temperature distribution. The experiment on the test model reveals the usefulness of the air cooling method.

  • PDF

Study on the Dynamic Characteristics of Rolling Stocks Passing on the High Speed Turnout System (고속용 분기기를 통과하는 철도차량의 동특성 예측연구)

  • 정우진;신정렬;양신추;김남포
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.226-233
    • /
    • 2000
  • This study has been performed to develop the practical method to estimate the change of dynamic characteristics of rolling stocks passing on the high speed turnout system. Each part of turnout system are modeled in consideration of alignment, enter angle and amount of deflection and they are used to achieve dynamic analysis with a train model. Analysis results are compared with test results to confirm its validation

  • PDF

Study on the Friction Characteristics of Advanced High Strength Steel Sheet (초고강도강판의 마찰특성에 관한 연구)

  • Kim, N.J.;Kim, S.H.;Jung, K.R.;Park, S.B.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.250-253
    • /
    • 2009
  • In this study, the friction test was performed to find friction characteristics of advanced high strength steel (AHSS) sheets and the multiple regression method was employed to obtain friction models. The friction coefficients associated with the lubricant viscosity, drawing speed, and blank holding pressure are measured. Differently from GA steel sheets, the effects of the lubricant viscosity and pulling speed are a little, which are explained by a theory of adhesion and wear as well as a deformation of friction surface. In addition, the effects of friction parameters are numerically represented by friction regression models.

  • PDF

A Real-scale Wind Tunnel Testing on a Pantograph for High-speed Train to Assess the Aerodynamic Characteristics (고속철도차량용 팬터그래프의 공력특성 평가를 위한 실모형 풍동시험)

  • Kwon, Hyeok-Bin;Cho, Young-Hyeon;Lee, Ki-Won;Kim, Ki-Nam
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.732-737
    • /
    • 2009
  • Wind tunnel testing on the real-scale pantograph for high-speed train has been conducted to investigate the aerodynamic characteristic of the pantograph at high-speed. The mid-scale subsonic wind tunnel of Korea Airforce Acamedy with 3.5m width, 2.45m height, and 8.8m length test section has been employed. The test model has been supported above 50cm height from the bottom of test section using vertical strut to eliminate the boundary layer generated from the bottom of the test section. The height of the pantograph has been varied in three cases, in both of the normal running and reverse running modes. The resultant lift forces of the pantograph to catenary system in all the cases have been measured and the relation between the test conditions and the lift forces have been extensively analyzed.