• Title/Summary/Keyword: High resolution mass spectrometry

Search Result 120, Processing Time 0.026 seconds

Mass Spectrometry-based Hair Metabolomics for Biomarker Discovery

  • Lee, Yu Ra;Hong, Jongki;Chung, Bong Chul
    • Mass Spectrometry Letters
    • /
    • v.13 no.1
    • /
    • pp.2-10
    • /
    • 2022
  • Metabolomics makes it possible to analyze the interrelationships between various signaling molecules based on the metabolic pathways involved by using high-resolution devices. This approach can also be used to obtain large-scale metabolic information to identify the relevant pathways for disease diagnosis and prognosis and search for potential biomarkers. In the fields of medicine and forensics, hair analysis is used to detect various metabolites in the body. Hair can be harvested readily in a noninvasive manner and is easier to transport and store than blood and urine. Another advantage from a forensic viewpoint is that hair reflects all the components of body fluids. In addition, because of the unique coating structure of hair, it can be used for measurements without changing or destroying its adsorbed components. In this review, the pretreatments for hair analysis, instrumental conditions and clinical applications are discussed. Especially, the clinical use of hair metabolomics in the diagnosis of various diseases and the limitations of the technique are described.

Surface Mass Imaging Technique for Nano-Surface Analysis

  • Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.113-114
    • /
    • 2013
  • Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging is a powerful technique for producing chemical images of small biomolecules (ex. metabolites, lipids, peptides) "as received" because of its high molecular specificity, high surface sensitivity, and submicron spatial resolution. In addition, matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) imaging is an essential technique for producing chemical images of large biomolecules (ex. genes and proteins). For this talk, we will show that label-free mass imaging technique can be a platform technology for biomedical studies such as early detection/diagnostics, accurate histologic diagnosis, prediction of clinical outcome, stem cell therapy, biosensors, nanomedicine and drug screening [1-7].

  • PDF

Residual Multi Pesticides Screening of Dead Birds by Orbitrap High Resolution Mass Spectrometry (오비트랩 고분해능 질량분석기를 이용한 폐사 조류 중 다성분 잔류 농약 스크리닝 기법)

  • Lee, Doo-Hee;Kim, Bo-Kyong;Wang, Seung-Jun;Son, Ki-Dong;Jung, Hyen-Mi;Choi, Jong-Woo
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.269-278
    • /
    • 2017
  • BACKGROUND: The objective of this study was to evaluate screening method of residual multi pesticides in dead birds by Orbitrap high resolution mass spectrometry (HRMS) to identify the cause of death for birds. METHODS AND RESULTS: Extraction and clean-up method of residual pesticides in liver of dead birds was used QuEChERS (Quick Easy Cheap Effective Rugged and Safe) and method validations was conducted using liquid chromatography and gas chroamtography with triple-quadrupole mass spectrometer (LC/MS/MS and GC/MS/MS) Also, we were evaluated screening method for the determination of residual pesticides in liver of dead birds by LC and GC Orbitrap Mass Spectrometry. Results of method validations, Correlation coefficients of the matrix matched calibration curves were >0.978, and the method detection limits (MDLs) and limits of quantitation (LOQ) were 2.8~72.1 ng/g (18.4 ng/g on average) and 9.0~230 ng/g (58.5 ng/g on average). The accuracy ranged from 69.1%to 130% (103% on average), and the precision values were less than 14.8%(3.8%on average). The screening of residual pesticides in liver of dead birds by LC and GC Orbitrap HRMS was detected monocrotophos, carbofuran, carbosulfan, deltametrin, benfuracarb, carbofuran, phosphamidon, prochloraz in investigated samples. CONCLUSION: This results showed that accurate mass were extraction of residual pesticides in dead birds by Orbitrap HRMS. It suggested that this screening method is applicable to the residual pesticide analysis for the cause of death as a main tool.

Application of Comprehensive 2D GC-MS and APPI FT-ICR MS for More Complete Understanding of Chemicals in Diesel Fuel

  • Cho, Yun-Ju;Islam, Annana;Ahmed, Arif;Kim, Sung-Hwan
    • Mass Spectrometry Letters
    • /
    • v.3 no.2
    • /
    • pp.43-46
    • /
    • 2012
  • In this study, comprehensive two dimension gas chromatography (2D GC-MS) and 15 T Fourier transform ion cyclotron resonance mass spectrometry (15T FT-ICR MS) connected to atmospheric pressure photo ionization (APPI) have been combined to obtain detailed chemical composition of a diesel oil sample. With 2D GC-MS, compounds with aliphatic alkyl, saturated cyclic ring(s), and one aromatic ring structures were mainly identified. Sensitivity toward aromatic compounds with more than two aromatic rings was low with 2D GC-MS. In contrast, aromatic compounds containing up to four benzene rings were identified by APPI FT-ICR MS. Relatively smaller abundance of cyclic ring compounds were found but no aliphatic alkyl compounds were observed by APPI FT-ICR MS. The data presented in this study clearly shows that 2D GC-MS and 15T FT-ICR MS provides different aspect of an oil sample and hence they have to be considered as complementary techniques to each other for more complete understanding of oil samples.

Secondary Ion Man Spectrometry: Theory rind Applications in Geosciences (이차이온질량분석기의 원리와 지질학적 응용)

  • 최변각
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.222-232
    • /
    • 2001
  • Secondary ion mass spectrometry (SIMS) uses focused high-speed primary ions to produce secondary ions from sample surface that are analyzed through a mass filter. SIMS is often called as ion microprobe, since it offers a micrometer-scale spatial resolution. Although the precision and accuracy of SIMS are not as good as many conventional mass spectrometers, it has several advantages such as small sample-size requirement, high spatial resolution and capability of in-situ analysis. In the field of geochemistry/cosmochemistry, SIMS is widely used for (1) stable isotope geochemistry of H, C, O, S, etc., (2) geochronology of U/Th-bearing minerals, (3) lateral distribution of trace elements in a mineral, and (4) discovery of presolar grains and investigation of their isotopic compositions.

  • PDF

Alternative Sample Preparation Techniques in Gas Chromatographic-Mass Spectrometric Analysis of Urinary Androgenic Steroids

  • Cho, Young-Dae;Choi, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1315-1322
    • /
    • 2006
  • The following study describes the gas chromatography-mass spectrometry (GC-MS) based screening and confirmation analysis of urinary androgenic steroids. Four commercially available solid-phase extraction (SPE) cartridges, Serdolit PAD-1, Sep-pak $C_{18}$, amino-propyl, and Oasis HLB, and three different extractive organic solvents, diethyl ether, methyl tert-butyl ether (MTBE), and n-pentane, were tested for sample preparation. Overall, Oasis HLB combined with MTBE extraction provided the highest recoveries in 39 of 46 total androgenic steroids examined and it showed a good extraction yield (>82.1%) for polar steroids, such as metabolites of fluoxymesterone, oxandrolone, and stanozolol, which gave a poor recovery in both n-pentane (9.2-64.3%) and diethyl ether (22.2-73.6%) extractions. All SPE sorbents tested showed potential, because they were efficient in extraction for most or selective steroids. When applied to positive urine samples based on the results obtained, the present method allowed selective and sensitive analysis for detection of urinary androgenic steroids. The experiments showed that the high-resolution MS method is clearly more efficient than the low-resolution MS technique for the detection of many urinary steroids. However, comprehensive sample clean-up procedures also might be needed especially in confirmation analysis to increase detectability.

Lipidomic profiling of Skipjack tuna (Katsuwonus pelamis) by ultrahigh-performance liquid chromatography coupled to high resolution mass spectrometry

  • Hu, Lingping;Hu, Zhiheng;Chin, Yaoxian;Yu, Haixia;Xu, Jianhong;Zhou, Jianwei;Liu, Donghong;Kang, Mengli;Hu, Yaqin
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.3
    • /
    • pp.140-150
    • /
    • 2022
  • A method of ultrahigh performance liquid chromatography coupled to high resolution mass spectrometry (UPLC-HRMS) was established for characterization of the lipid profile of Skipjack tuna. Over 300 lipid molecular species were identified through cross-acquisition in both positive and negative ion mode. Phospholipids (PLs) were dominant in Skipjack tuna. Lysophosphatidylethanolamine (LPE), phosphatidylethanolamine (PE), lysophosphatidylcholine (LPC) and phosphatidylcholine (PC) were the main lipid molecular species in PLs, accounting for 89.24% of the total PLs. The ratio of sphingolipids (SLs) and glycerolipids (GLs) were considerable, accounting for 12.30% and 13.60% of the total lipids respectively. Ceramide (Cer) was the main lipid molecular species of SLs, accounting for 64.96% of total SLs, followed by sphingomyelin (SM), accounting for 25.45% of total SLs. Ether diglycerides (ether DG) were the main lipid molecular species of GLs (97.83%). The main fatty acids (FAs) are unsaturated fatty acids (UFAs) in Skipjack tuna. Besides, a new FAs class branched fatty acid esters of hydroxy fatty acids (FAHFA) was detected, together with the FA. The active lipids identified in this study can be used to evaluate the nutritional value of Skipjack tuna.

Analysis of Hypoxia-Inducible Factor Stabilizers by a Modified QuEChERS Extraction for Antidoping Analysis

  • Kim, Si Hyun;Lim, Nu Ri;Min, Hophil;Sung, Changmin;Oh, Han Bin;Kim, Ki Hun
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.118-124
    • /
    • 2020
  • An analytical method was developed for hypoxia-inducible factor (HIF) stabilizers based on QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) sample preparation and liquid chromatography-high resolution mass spectrometry analysis. HIF stabilizers potentially enhance the performance of athletes, and hence, they have been prohibited. However, the analysis of urinary HIF stabilizers is not easy owing to their unique structure and characteristics. Hence, we developed the QuEChERS preparation technique for a complementary method and optimized the pH, volume of extraction solvent, and number of extractions. We found that double extraction with 1% of formic acid in acetonitrile provided the highest recovery of HIF stabilizers. Moreover, the composition of the mobile phase was also optimized for better separation of molidustat and IOX4. The developed method was validated in terms of its precision, detection limit, matrix effect, and recovery for ISO accreditation. To the best of our knowledge, this is the first demonstration of the application of the QuEChERS method, which is suitable as a complementary analytical method, in antidoping.

Establishment of the Analytical Method for Residual Pharmaceuticals in Raw Water Using Online Sample Preparation and High Resolution Orbitrap LC/ESI-MS (온라인 자동화 시료 전처리 및 HR Orbitrap LC/ESI-MS를 이용한 환경시료 중 잔류 의약물질 분석방법 확립)

  • Hwang, Yoonjung;Sin, Sanghee;Park, Jongsuk
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.409-419
    • /
    • 2013
  • In this study, the analytical method for 27 residual pharmaceuticals in raw water was developed. Online sample preconcentration/extraction and analysis with high resolution Orbitrap mass spectrometry (LC-ESI/Orbitrap MS) were performed. The calibration curves showed good linearities (above $r^2$ = 0.998) in the range of 5 ~ 1,000 ng/L. The method detection limit and the limit of quantification were 1.1 ~ 10.0 ng/L and 3.4 ~ 31.7 ng/L, respectively. Recoveries of the target compounds were between 70.1% and 115.8% (except cefadroxil, cefradine, vancomycin, and iopromide (50.2 ~ 67.0%)). The optimized analytical method can be useful to determine the residual pharmaceuticals in raw water.

Determination of Boron Steel by Isotope-Dilution Inductively Coupled Plasma Mass Spectrometry after Matrix Separation

  • Park, Chang-J.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1541-1544
    • /
    • 2002
  • The concentration of B in steels is important due to its influence on mechanical properties of steel such as hardenability, hot workability, and creep resistance. An analytical method has been developed to determine B in steel samples by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). National Institute of Standard and Technology Standard Reference Material (NIST SRM) 348a was analyzed to validate the analytical method. The steel sample was digested in a centrifuge bottle with addition of aqua regia and $^{10}B$ spike isotope. Sample pH was then adjusted to higher than 10 to precipitate most matrix elements such as Fe, Cr, and Ni. After centrifugation, the supernatant solution was passed through a cation exchange column to enhance the matrix separation efficiency. B recovery efficiency was about 37%, while matrix removal efficiency was higher than 99.9% for major matrix elements. The isotope dilution method was used for quantification and the determined B concentration was in good agreement with the certified value.