• Title/Summary/Keyword: High pressure water contact state

Search Result 12, Processing Time 0.023 seconds

Hydro-mechanical interaction of reinforced concrete lining in hydraulic pressure tunnel

  • Wu, He-Gao;Zhou, Li;Su, Kai;Zhou, Ya-Feng;Wen, Xi-Yu
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.699-712
    • /
    • 2019
  • The reinforced concrete lining of hydraulic pressure tunnels tends to crack under high inner water pressure (IWP), which results in the inner water exosmosis along cracks and involves typical hydro-mechanical interaction. This study aims at the development, validation and application of an indirect-coupled method to simulate the lining cracking process. Based on the concrete damage plasticity (CDP) model, the utility routine GETVRM and the user subroutine USDFLD in the finite element code ABAQUS is employed to calculate and adjust the secondary hydraulic conductivity according to the material damage and the plastic volume strain. The friction-contact method (FCM) is introduced to track the lining-rock interface behavior. Compared with the traditional node-shared method (NSM) model, the FCM model is more feasible to simulate the lining cracking process. The number of cracks and the reinforcement stress can be significantly reduced, which matches well with the observed results in engineering practices. Moreover, the damage evolution of reinforced concrete lining can be effectively slowed down. This numerical method provides an insight into the cracking process of reinforced concrete lining in hydraulic pressure tunnels.

The Effects of High Pressure Water Contact State on Hydraulic Fracturing (고압수 접촉상태가 수압파쇄에 미치는 영향)

  • Lee, Sang Hun;Lim, Jong Se;Jang, Won Yil
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.409-417
    • /
    • 2016
  • The shale gas is emerging as one of the oil and gas resources which can replace the traditional oil and gas resources. As the shale layer where the shale gas is deposited has low permeability, the hydrofracturing method is required to improve the productivity. This study is designed to conduct the laboratory hydrofracturing test on the samples which are modeled after the drilling hole having the general drilling hole and spiral groove. And compare the initial fracturing pressure and fluid contact between them in order to the result of the hydrofracturing depending on the shape of the drilling hole. In addition, the results were compared with the numerical modeling values from 3DEC and they were also compared with the data from the advance researches. It was found from the study that rather than the contact area of the high pressures water, the force concentration depending on the form of guide hole was more effective in the hydrofracturing.

EXACT RIEMANN SOLVER FOR THE AIR-WATER TWO-PHASE SHOCK TUBE PROBLEMS (공기-물 이상매질 충격파관 문제에 대한 정확한 Riemann 해법)

  • Yeom, G.S.;Chang, K.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.365-367
    • /
    • 2010
  • In this paper, we presented the exact Riemann solver for the air-water two-phase shock tube problems where the strength of the propagated sock wave is moderately weak. The shock tube has a diaphragm in the middle which separates water medium in the left and air medium in the right. By rupturing the diaphragm, various waves such as rarefaction wave, shock wave and contact discontinuity are propagated into water and air. Both fluids are treated as compressible, with the linearized equations of state. We used the isentropic relations for the air and water assuming a weak shock wave. We solved the shock tube problem considering a high pressure in the water and a low pressure in the air. The numerical results cleary showed a left-traveling rarefaction wave in the water, a right-traveling shock wave in the air, and the right-traveling material interface.

  • PDF

Safety evaluation of agricultural reservoir embankment according to backside extension (후면 덧쌓기에 따른 농업용 저수지 제체의 안정성 평가)

  • Lee, Dal-Won;Noh, Jae-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.97-110
    • /
    • 2012
  • This study was carried out for safety evaluation, the practical application and improvement of design method of the agricultural reservoir embankment according to backside extension. Seepage analysis, slope stability analysis and finite element analysis were performed for steady state and transient conditions. Also, the pore water pressure, seepage quantity, safety factor and stress-strain behavior according to high water level and rapid drawdown were compared and analyzed. The pore water pressure at contact region between backside extension and old embankment was kept high after rapid drawdown. Therefore, backside extension is recommended that design method is required to be improved and reinforced more than the others raising embankment. The hydraulic gradients before and after backside extension showed high value at the base of the core, but they showed stable state at the upstream slope and downstream slope. The seepage quantity per 1 day and the leakage per 100 m for the steady state and transient conditions appeared to be safe against the piping. The safety factor of slope stability showed high at the steady state, and transient conditions did not show differences depending on the rapid drawdown. The safety factor was appeared high at the upstream slope before backside extension and downstream slope after extension. The excess pore water pressure for steady state and transient conditions showed negative(-) at the upstream slope, it was small at the downstream slope. The mean effective stress (p') showed high at the base of the core and to be wild distribution after the extension. The displacement after extension showed 0.02-0.06 m in the upstream slope, the maximum shear strain after extension was smaller than that before extension.

Fabrication of Stable Water/Oil Separation Filter Using Effect of Surface Wettability (표면 젖음성을 이용한 물/오일 분리막 제작)

  • Kim, Dohyeong;An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.213-217
    • /
    • 2016
  • The superhydrophobic and superoleophobic meshes surfaces have been used in various applications such as self-cleaning, anti-icing, gas exchange, oil-water separation, sound-wave penetrable anti-wetting structures, etc. In particular, there are many studies for oil-water separation with environmental issues. Because of high pressure and dynamic environment, oil-water separation filters must have stable surface properties as super-hydrophobicity and superoleophobicity. The oleophobicity of surface depends on the surface chemistry and roughness of the surface. The roughness of oleophobic surface enhances its static contact angle and stability. The multi-scale hierarchical structure provides a stable superhydrophobic state by maintaining a Cassie state. In this research, we fabricated a superoleophobic mesh with a multi-scale hierarchical structure to increase the pressure resistance and adjusted a size of the mesh hole.

A study on the liquefaction risk in seismic design of foundations

  • Ardeshiri-Lajimi, Saeid;Yazdani, Mahmoud;Assadi-Langroudi, Arya
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.805-820
    • /
    • 2016
  • A fully coupled non-linear effective stress response finite difference (FD) model is built to survey the counter-intuitive recent findings on the reliance of pore water pressure ratio on foundation contact pressure. Two alternative design scenarios for a benchmark problem are explored and contrasted in the light of construction emission rates using the EFFC-DFI methodology. A strain-hardening effective stress plasticity model is adopted to simulate the dynamic loading. A combination of input motions, contact pressure, initial vertical total pressure and distance to foundation centreline are employed, as model variables, to further investigate the control of permanent and variable actions on the residual pore pressure ratio. The model is verified against the Ghosh and Madabhushi high acceleration field test database. The outputs of this work are aimed to improve the current computer-aided seismic foundation design that relies on ground's packing state and consistency. The results confirm that on seismic excitation of shallow foundations, the likelihood of effective stress loss is greater in deeper depths and across free field. For the benchmark problem, adopting a shallow foundation system instead of piled foundation benefitted in a 75% less emission rate, a marked proportion of which is owed to reduced materials and haulage carbon cost.

Modeling time-dependent behavior of hard sandstone using the DEM method

  • Guo, Wen-Bin;Hu, Bo;Cheng, Jian-Long;Wang, Bei-Fang
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.517-525
    • /
    • 2020
  • The long-term stability of rock engineering is significantly affected by the time-dependent deformation behavior of rock, which is an important mechanical property of rock for engineering design. Although the hard rocks show small creep deformation, it cannot be ignored under high-stress condition during deep excavation. The inner mechanism of creep is complicated, therefore, it is necessary to investigate the relationship between microscopic creep mechanism and the macro creep behavior of rock. Microscopic numerical modeling of sandstone creep was performed in the investigation. A numerical sandstone sample was generated and Parallel Bond contact and Burger's contact model were assigned to the contacts between particles in DEM simulation. Sensitivity analysis of the microscopic creep parameters was conducted to explore how microscopic parameters affect the macroscopic creep deformation. The results show that the microscopic creep parameters have linear correlations with the corresponding macroscopic creep parameters, whereas the friction coefficient shows power function with peak strength and Young's modulus, respectively. Moreover, the microscopic parameters were calibrated. The creep modeling curve is in good agreement with the verification test result. Finally, the creep curves under one-step loading and multi-step loading were compared. This investigation can act as a helpful reference for modeling rock creep behavior from a microscopic mechanism perspective.

Stress waves transmission from railway track over geogrid reinforced ballast underlain by clay

  • Fattah, Mohammed Y.;Mahmood, Mahmood R.;Aswad, Mohammed F.
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.1-27
    • /
    • 2022
  • Extensive laboratory tests were conducted to investigate the effect of load amplitude, geogrid position, and number of geogrid layers, thickness of ballast layer and clay stiffness on behavior of reinforced ballast layer and induced strains in geogrid. A half full-scale railway was constructed for carrying out the tests, the model consists of two rails 800 mm in length with three wooden sleepers (900 mm × 10 mm × 10 mm). The ballast was overlying 500 mm thickness clay in two states, soft and stiff state. Laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid. Settlement in ballast and clay, soil pressure and pore water pressure induced in the clay were measured in reinforced and unreinforced ballast cases. It was concluded that the effect of frequency on the settlement ratio is almost constant after 500 cycles. This is due to that the total settlement after 500 cycles, almost reached its peak value, which means that the ballast particles become very close to each other, so the frequency is less effective for high contact particles forces. The average maximum vertical stress and pore water pressure increased with frequency.

Water Repellent Finishes of Polyester Fiber Using Glow Discharge (글로우방전을 이용한 폴리에스테르섬유의 발수가공)

  • Mo, Sang Young;Kim, Gi Lyong;Kim, Tae Nyun;Chun, Tae Il
    • Textile Coloration and Finishing
    • /
    • v.5 no.4
    • /
    • pp.29-41
    • /
    • 1993
  • In order to surface Hydrophobilization of Poly(ethylene terephthalate) (PET) fiber samples were treated in the atmosphere of CF$_{4}$ or $C_{2}$F$_{6}$glow discharge. The sample used in this study was PET film which is 75$\mu$m thick made by Teijin, O-Type(Japan). The cleaned samples were placed in plasma reactor made of pyrex glass cylinder, and plasma processing was carried out by glow discharge of CF$_{4}$ or $C_{2}$F$_{6}$ gas, being continuously fed by gas flow and continuously pumped out by a vacuum system. Electric power source for generate plasma state was sustained alternating current(60Hz) and voltage was sustained 600 volt. The duration of plasma treatment varied from 15 to 120 seconds except special case, the monomer gase pressure varied from 0.02 to 0.3 Torr and power range was 10 to 90 watts. The hydrophobic features of changed PET surface were evaluated by contact angle measurement and surface chemical characteristics were analyzed by ESCA. Results can be summerized as follows. 1. The most favorable setting position of substrate was the center area between the two electrodes. 2. $C_{2}$F$_{6}$ discharge current was lower than that of CF$_{4}$ when same voltage was sustained. Treated efficiency between CF$_{4}$ and $C_{2}$F$_{6}$ did not revealed significant differences under same electric power(wattage). 3. When monomer pressure is very low below 0.02 torr, as though substrate is exposed to CF$_{4}$ or $C_{2}$F$_{6}$ plasma, it tend to be hydrophilic through a little of fluorine bond and a great deal of oxidizing reaction. 4. There brought good hydrophobilization when monomer pressure was more 0.1 torr and duration of glow discharge treatment was over 45 seconds. When monomer pressure was too high, discharge current became low. Although prolong the duration, there was no more high hydrophobilization. 5. According to ESCA analysis, there were a little CF bond and a prevailing CF$_{2}$ bond in CF$_{4}$-treated substrate. There were CF$_{3}$, a little CF and a prevailing CF$_{2}$ bond in $C_{2}$F$_{6}$-treated substrate.d substrate.

  • PDF

Rhodopsedomonas palustris P4를 이용한 Trickle Bed Reactor에서의 일산화탄소와 물로부터 연속적인 수소생산

  • Park, Ji-Yeong;Lee, Tae-Ho;Park, Seong-Hun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.241-244
    • /
    • 2000
  • Continuous $H_2$ production from CO and water was studied in a trickle bed reactor(TBR) using Rhodopspedomonas palustris P4. To achieve high cell density, R. palustris P4 were cultivated by a fed-batch culture mode under chemoheterotrophic and aerobic condition, and final cell concentration was 13 g/L. TBR could provide sufficient residence time for CO to contact with cell suspension circulating TBR. The maximum CO uptake rate was found to be 16 mmol/L/hr at gas retention time of 50 min and CO partial pressure of 0.4 atm. In our correlation of the experimental data with mathematical model of TBR, the TBR operation with P4 was found to be lie in an intermediate state between mass transfer limitation and kinetic limitation. Due to the high cell density as well as hydrogen production activity in this study, TBR operation showed a superior performance to other previous reports on microbial hydrogen production.

  • PDF