• Title/Summary/Keyword: High pressure processing

Search Result 625, Processing Time 0.025 seconds

Comparison of Friction Coefficients of Sheet Materials in Various Deformation Modes (변형모드별 판재의 마찰특성 비교)

  • Kim, Young-Suk;Kim, Ki-Soo
    • Transactions of Materials Processing
    • /
    • v.3 no.1
    • /
    • pp.51-62
    • /
    • 1994
  • Cup drawing test and U-bending test were performed to evaluate the friction characteristics of sheet materials for the different deformation modes involved in stamping process. The coefficient of friction calculated from the each test was compared to that obtained from the draw bead friction test. It was clarified that the cup drawing test could be simply used for evaluating the friction characteristic of sheet material in deep drawing process with high contacting pressure. However the U-bending test is suitable to evaluate the frictional characteristic of sheet material in bending process with low contacting pressure.

  • PDF

전자빔 용접된 고장력 알루미늄 합금 용접부의 고온균열 발생 및 특성에 관한 연구

  • 김성욱;김경민;윤의박;이창희
    • Laser Solutions
    • /
    • v.4 no.1
    • /
    • pp.39-48
    • /
    • 2001
  • This study was performed to evaluate basic characteristics of electron beam weldability for high strength aluminum alloys. The aluminum alloys used were A5083 and A6N01, and A7N01. The principal welding process parameters, such as accelerating voltage, beam current, welding speed and chamber pressure were investigated. The dimension and microstructure of welds were evaluated with OLM, and SEM (EDAX). In addition, weldability variation(cracking) due to process parameters was also evaluated. The degree of cracking in the EB fusion zone appears to be affected mainly by aspect ratio, such that as aspect ratio increases the cracking tendency also increases. The alloying element itself may also affect the hot cracking resistance, but its role is considered to be indirect effect such that the relatively higher vaporization pressure elements of Zn and Mg give deeper weld penetration and thus results in greater cracking tendency.

  • PDF

Characteristics of Spray Development from Vapor/Liquid Phase Distribution for GDI Spray (GDI 분무의 기.액상 분포를 통한 분무의 성장 특성)

  • 황순철;최동석;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.50-58
    • /
    • 2001
  • The purpose of this research is to obtain the information of the development process of a vaporizing GDI spray using exciplex fluorecence method. Fluorobenzene/DEMA system was used as the exciplex-forming dopants. The 2-D spray images of liquid and vapor phases were acquired, and the behavior of both phases was analyzed by the image processing. The experiment was performed at the three different ambient perssures and the ambient temperature of 273K and 473K. As the result of this work, it was found that the development characteristics of GDI spray have stronger effect on the ambient pressure than on the ambient temperature. With an increase of ambient pressure, the distribution of vapor phase was decreased and the concentration of that was denser. Two regions, namely cone and mixing regions could be identified from those resulrs.

  • PDF

Intermittent Spray Characteristics of the Injection Nozzle for a Gasoline Engine (가솔린 엔진용 분사노즐의 간헐적인 분무특성)

  • 김원태;오제하;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.128-136
    • /
    • 1997
  • Spray characteristics of a fuel injector have an important effect upon engine power and emission. Thus this study was investigated the spray characteristics of the intermittent injection using a gasoline fuel injector. Image processing system and PDA system were utilized for visualization of a spray behavior and measurements of a droplet size and velocity, respectively. Fuel injection duration was fixed with 3ms and injection pressure was varied such as 250kPa, 300kPa, 350kPa. for a high fuel injection pressure, spray tip arrival time was fluctuated at a vigorously disintegrated cross section. Axial velocity was linear correlated with fuel droplet size in the time interval of an injected main spray at spray downstream.

  • PDF

Development of a Chip Bonding Technology for Plastic Film LCDs

  • Park, S.K.;Han, J.I.;Kim, W.K.;Kwak, M.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.89-90
    • /
    • 2000
  • A new technology realizing interconnection between Plastic Film LCDs panel and a driving circuit was developed under the processing condition of low temperature and pressure with ACFs developed for Plastic Film LCDs. The conduction failure of interconnection of the two resulted from elasticity, low thermal resistance and high thermal expansion of plastic substrates. Conductive particles with elasticity similar to the plastic substrate did not damaged a ITO electrode on plastic substrates, and low temperature and pressure process also did not deform the surface of plastic substrates. As a result highly reliable interconnection with minimum contact resistance was accomplished.

  • PDF

Research on the air data acquisition method using static pressure hole (정압력 홀을 적용한 초고속 유동 데이터 획득 방안에 관한 연구)

  • Choi, Jong-Ho;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.406-410
    • /
    • 2010
  • Current paper represents the air data acquisition and processing algorithm which can acquire the air data such as velocity and angle of attack by measuring the static pressure on the specific locations of a high speed aerial vehicle. Unlike the previous air data acquisition system, current system applied several pre-determined data obtained from computational fluid dynamic approach having enough sensor redundancy and fault detection ability. The verification of current algorithm was done by commercial software Matlab and Simulink.

  • PDF

DEVELOPMENT OF THE ALTERNATE PRESSURIZED THERMAL SHOCK RULE (10 CFR 50.61a) IN THE UNITED STATES

  • Kirk, Mark
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.277-294
    • /
    • 2013
  • In the early 1980s, attention focused on the possibility that pressurized thermal shock (PTS) events could challenge the integrity of a nuclear reactor pressure vessel (RPV) because operational experience suggested that overcooling events, while not common, did occur, and because the results of in-reactor materials surveillance programs showed that RPV steels and welds, particularly those having high copper content, experience a loss of toughness with time due to neutron irradiation embrittlement. These recognitions motivated analysis of PTS and the development of toughness limits for safe operation. It is now widely recognized that state of knowledge and data limitations from this time necessitated conservative treatment of several key parameters and models used in the probabilistic calculations that provided the technical of the PTS Rule, 10 CFR 50.61. To remove the unnecessary burden imposed by these conservatisms, and to improve the NRC's efficiency in processing exemption and license exemption requests, the NRC undertook the PTS re-evaluation project. This paper provides a synopsis of the results of that project, and the resulting Alternate PTS rule, 10 CFR 50.61a.

Effects of $H_2$ Pretreatment using plasma for improved characteristics of Cu thin films (Cu 박막의 특성개선을 위한 플라즈마를 이용한 $H_2$ 전처리 효과)

  • 이종현;이정환;최시영
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.249-255
    • /
    • 1999
  • Deposition characteristics of Cu thin films using Ar carrier gas and $H_2$ processing gas at various working pressures and substrate temperatures were investigated. Also, effects of $H_2$ pretreatment using plasma at $200^{\circ}C$ of substrate temperature and 0.6 Torr of chamber pressure were stdied. Cu thin films were deposited on TiN/Si substrate at working pressure of 0.5~1.5 Torr, substrate temperatures of 140~$240^{\circ}C$ with (hface)Cu(tmvs). Substrates were pretreated by $H_2$ plasma, and Cu films deposited in situ using twofold shower head. The purity, electrical resistivity, thickness, surface morphology, optical properties of the deposited Cu films were measured b the AES, four point probe, stylus profiler, SEM,. and the uv-visible spectrophotometer. This study suggests that $H_2$ plasma is an effective method for enhancing deposition rate and for producing high quality copper thin films.

  • PDF

Influence of Tool Coating on Frictional Behavior of AZ31B Mg Alloy at Elevated Temperature (금형 표면 처리가 AZ31B 마그네슘 합금의 온간 마찰 특성에 미치는 영향에 관한 연구)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2021
  • The success of warm forming of Mg alloy sheet is greatly influenced by friction at elevated temperature, depending on the surface treatment of the tool. The tool coating affected the frictional characteristics of AZ31B Mg alloy sheet at elevated and room temperatures. The frictional behavior of the Mg alloy sheet at room temperature was not significantly affected by surface treatment conditions of the tool, but was significantly affected at elevated temperature. When the contact pressure is high, a few surface-treated tools exhibit a higher coefficient of friction than those without surface treatment. It is important to select the surface treatment conditions of the tool in order to ensure appropriate friction during warm forming of Mg alloy sheet.

Resistive Switching Behavior of Cr-Doped SrZrO3 Perovskite Thin Films by Oxygen Pressure Change (산소 분압의 변화에 따른 Cr-Doped SrZrO3 페로브스카이트 박막의 저항변화 특성)

  • Yang, Min-Kyu;Park, Jae-Wan;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.257-261
    • /
    • 2010
  • A non-volatile resistive random access memory (RRAM) device with a Cr-doped $SrZrO_3/SrRuO_3$ bottom electrode heterostructure was fabricated on $SrTiO_3$ substrates using pulsed laser deposition. During the deposition process, the substrate temperature was $650^{\circ}C$ and the variable ambient oxygen pressure had a range of 50-250 mTorr. The sensitive dependences of the film structure on the processing oxygen pressure are important in controlling the bistable resistive switching of the Cr-doped $SrZrO_3$ film. Therefore, oxygen pressure plays a crucial role in determining electrical properties and film growth characteristics such as various microstructural defects and crystallization. Inside, the microstructure and crystallinity of the Cr-doped $SrZrO_3$ film by oxygen pressure were strong effects on the set, reset switching voltage of the Cr-doped $SrZrO_3$. The bistable switching is related to the defects and controls their number and structure. Therefore, the relation of defects generated and resistive switching behavior by oxygen pressure change will be discussed. We found that deposition conditions and ambient oxygen pressure highly affect the switching behavior. It is suggested that the interface between the top electrode and Cr-doped $SrZrO_3$ perovskite plays an important role in the resistive switching behavior. From I-V characteristics, a typical ON state resistance of $100-200\;{\Omega}$ and a typical OFF state resistance of $1-2\;k{\Omega}$, were observed. These transition metal-doped perovskite thin films can be used for memory device applications due to their high ON/OFF ratio, simple device structure, and non-volatility.