• Title/Summary/Keyword: High power LED

Search Result 601, Processing Time 0.028 seconds

The Operating System of High-power LED module with Back-Boost Mode (Back-Boost 방식 고출력 LED 구동시스템)

  • Chung, Ji-Hyun;Song, Sung-Geun;Park, Sung-Jun;Chang, Young-Hak;Moon, Chae-Joo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.201-208
    • /
    • 2006
  • An alternative to the nuclear and fossil fuel power is renewable energy technologies (hydro, wind, solar and ocean), and the research about the highest efficiency machinery have been processed. The high-power LED is the representative one among those. In this paper, a high efficiency lighting system using a battery charged with solar or wind power is proposed for a high power LED. And a new efficient converter called 'Back-boost' is proposed. The validity of the lighting system scheme is verified by experimental results based on a laboratory prototype.

Design of the Power-LED Driver for High Speed Dimming Control (고속 디밍제어를 위한 고출력-LED 드라이버 설계)

  • Lee, Keon;Kang, Woo-Seong;Jung, Tae-Jin;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.128-135
    • /
    • 2013
  • This paper presents a high dimming ratio Power-LED driver IC with high power which is capable of controlling LEDs. In order to accomplish a high dimming ratio LED driver, the preloading inductor current methodology is proposed for the power stage of the proposed method to achieve the fast transient response time during the Power-LED load switching. The information containing the current flowing on the LEDs can be utilized to predict the amount of the current on the inductor. The minimum LED current rising time of existing high dimming ratio Power-LED driver is limited by $3{\mu}s$, however that of the proposed high dimming ratio Power-LED driver is reduced about 1/10. The LED driver is implemented with 0.35um 60V BCDMOS 2-poly 4-metal process. The measurement results show that the proposed LED driver system features the minimum rising time as small as 240ns at the dimming frequency of 1KHz with a 12V of input voltage, nine white LEDs and 353mA of LED current. The LED rising time and power conversion efficiency of the chip are measured to be 240ns and 93.72%, respectively.

Simple Structure LED-Driving Power Converter with High Power Factor (높은 역률을 가지는 단순 구조 LED 구동 전력컨버터)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.767-773
    • /
    • 2018
  • This paper proposes the simple structure LED-driving power converter with high power factor. As the proposed power converter combines the PFC boost converter and the conventional flyback converter into only one power conversion circuit, it simplifies the structure of LED-driving power converter. Thus the proposed converter is controlled using only one PWM controller IC, and it achieves high power factor, constant output voltage/current and cost-effectiveness. Therefore the proposed converter is suitable for the industry production and utilization of LED-light-system. In this paper, the operation analysis and design example of the proposed converter are explained, briefly. Also experimental results of the prototype that is implemented based on the designed circuit parameters are shown to validate operation characteristics of the proposed converter.

A High Voltage, High Side Current Sensing Boost Converter

  • Choi, Moonho;Kim, Jaewoon
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.36-37
    • /
    • 2013
  • This paper presents high voltage operation sensing boost converter with high side current. Proposed topology has three functions which are high voltage driving, high side current sensing and low voltage boost controller. High voltage gate driving block provides LED dimming function and switch function such as a load switch of LED driver. To protect abnormal fault and burn out of LED bar, it is applied high side current sensing method with high voltage driver. This proposed configuration of boost converter shows the effectiveness capability to LED driver through measurement results.

  • PDF

Evaluation of the Lighting Characteristics in High Power White LED Module with Cooling Condition (방열 조건에 따른 5W급 고출력 백색 LED 모듈의 광 특성 평가)

  • Yun, Janghee;Ryeom, Jeongduk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.1-8
    • /
    • 2012
  • The performance and lighting characteristics of the LED depend on cooling condition because the power LED generates lots of heat. In this paper, the effect of the generated heat from power LED module on lighting characteristics and performance is measured and evaluated. For experiments, the transient temperature of a power LED module with cooling condition is measured. In addition, the temperature and lighting characteristics of the LED module are measured during the steady state. As a result, the cooling condition is less effective on the lighting characteristics of the LED module at rated current but the cooling condition extremely affects those of the LED module over the rated current. Because high temperature of the power LED module causes the low phosphor conversion, luminance efficiency becomes low and color temperature becomes high. When power LED module are driven over the rated condition, higher temperature is directly related to lighting characteristics and performance of the LED module rather than higher current.

Development of High power LED module for Channel letter (Channel letter용 High Power LED Module 개발)

  • Kim, Jin-Hong;Song, Sang-Bin;Kim, Gi-Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.95-100
    • /
    • 2007
  • Channel letter용 High Power LED Module 개발하기 위하여, 1W 백색(단색) LED 1EA LED Module과 1W 백색(단색) LED 3EA LED Module, 3W RGB LED 1EA LED Module에 대한 3종의 제품 개발하고, 고효율 RGB LED SMPS 회로 설계, 광색 가변을 위한 RGB LED 최적 배치 및 렌즈 설계, 고출력 1W LED Module 방열 설계 및 기구 개발, SMPS 회로 및 RGB LED 배열 회로 통합 시제품 직접 제작하였다, 신뢰성 평가 및 성능 시험 등을 실시하였으며, T자형 Channel letter에 기존 고휘도 LED Module과 개발된 고출력 LED Nodule을 동시에 적용한 결과, 기존 고휘도 LED Module를 사용하였을 경우에는 $1W{\times}10$개로 10W의 전력을 소비하였으나 개발된 고출력 LED Nodule은 $3W{\times}3$개로 9W의 전력을 소비하였으며 1W의 에너지가 절감되었음에도 불구하고 평균 휘도는 약 2.5배, 균제도는 1.43 배가 더 우수한 결과를 얻었다.

  • PDF

The operating system of high-power LED module with back-boost mode (Back-Boost 방식 고출력 LED 구동시스템)

  • Chung, J.H.;Song, S.G.;Choi, J.H.;Park, S.J.;Moon, C.J.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.682-686
    • /
    • 2005
  • Recently the study is being addressed on the energy economy as greatly as possible. The researches on light source that have higher efficiency than the exiting are performing. The high-power LED is the representative one among those. There are two fields in the research on the high-power LED, the ordinary illuminating apparatus and the night illuminating apparatus using wind and solar energy. In this paper, we validated the probability of using high-power LED as illuminating apparatus and proposed the novel LED power equipment that has more stability and better efficiency than the exiting method. By using the propose method the -R-E-A-C-T is reduced and the efficiency improved.

  • PDF

High-Efficiency & High-Power LED Driver for Visible Light Communication (가시광 통신을 위한 고효율.대용량 LED 드라이버)

  • Cho, Sang-Ho;Kim, Jin-Ho;Jang, Byung-Jun;Roh, Chung-Wook;Hong, Sung-Soo;Han, Sang-Kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.430-431
    • /
    • 2010
  • 본 논문에서는 가시광 통신을 위한 고효율 대용량 LED 드라이버를 제안한다. 기존 가시광 통신을 위한 LED 드라이버는 LED의 선형 구동방식으로 인한 전력 손실 및 발열이 매우 심각하여 대용량의 조명용 LED에 적용하기에는 현실적인 어려움이 뒤따랐다. 하지만 제안 회로는 LED의 스위칭 방식 구동을 통해 전력 변환 효율 및 발열이 크게 개선되어 대용량의 조명용 LED에 적용할 수 있을 뿐 아니라 효율 저하 없이 최대 10Mbps의 높은 데이터 전송 성능을 가지는 부가적인 무선통신 시스템을 구현할 수 있다. 최종적으로, 제안회로의 우수성을 검증하기 위하여 무선통신 오디오 시스템을 구현하여 고찰된 실험 결과를 제시한다.

  • PDF

Optical and Thermal Influence Analysis of High-power LED by MCPCB temperature (MCPCB의 온도에 따른 고출력 LED의 광학적, 열적 영향력 분석)

  • Lee, Seung-Min;Yang, Jong-Kyung;Jo, Ju-Ung;Lee, Jong-Chan;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2276-2280
    • /
    • 2008
  • In this paper, we present thermal dependancy of LED package element by changing temperature of MCPCB for design high efficiency LED lamp, and confirmed influence of LED chip against temperature with analysis of thermal resistance and thermal capacitance. As increasing temperature, WPOs were decreased from 25 to 22.5 [%] and optical power were also decreased. that is decreased reason of optical power that forward voltage was declined by decrease of energy bandgap. Therefore optical power by temperature of MCPCB should consider to design lamp for street light and security light. Moreover, compensation from declined optical efficiency is demanded when LED package is composed. Also, thermal resistances from chip to metal PCB were decreased from 12.18 to 10.8[$^{\circ}C/W$] by changing temperature. Among the thermal resistances, the thermal resistance form chip to die attachment was decreased from 2.87 to 2.5[$^{\circ}C/W$] and was decreased 0.72[$^{\circ}C/W$] in Heat Slug by chaning temperature. Therefore, because of thermal resistance gap in chip and heat slug, reliability and endurance of high power LED affect by increasing non-radiative recombination in chip from heat.

Design of New LED Drive using Energy Recovery Circuit (에너지 회수 회로를 이용한 새로운 LED 구동드라이브 설계)

  • Han, Man-Seung;Lim, Sang-Kil;Park, Sung-Jun;Lee, Sang-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.9-17
    • /
    • 2011
  • The high-power LED (Light Emitting Diode) which is recently gaining popularity as a digital light source has such advantages as low power consumption, long life, fast switching speed, and high efficiency. Thus, many efforts are being made to use the high-power LEDs for general lighting. This paper proposes LED driving circuit uses a DC/DC converter that can recover energy to compensate for the current variations caused by changes in LED equivalent resistance following a temperature change instead of serial resistance. The maximum input voltage of this DC/DC converter has low voltage variations by temperature change when the rated current is formed. In order to return current to the input side, we need a high boosting at low power. Thus, to improve the low efficiency of power converter, the power converter can be configured in such a way to gather the powers of low-capacity DC/DC converters and return the total power. Experiments showed that the proposed system improved efficiency compared to the conventional LED drive using the existing DC/DC converter.