• 제목/요약/키워드: High manganese steel

검색결과 84건 처리시간 0.026초

Ti을 첨가한 Mn 강의 인장특성과 표면특성 (Tensile Strength and Surface Characteristics of Mn Steel with Ti Addition)

  • 황령경;윤성태;이관영;황선중
    • 한국주조공학회지
    • /
    • 제44권1호
    • /
    • pp.9-15
    • /
    • 2024
  • 본 연구에서는 망간강을 소재로 하는 부품의 수명향상을 위해 망간강에 Ti의 첨가량을 변화하여 망간강을 주조하였으며, 주조한 소재의 특성을 확인하기 위하여 인장 및 표면 특성 그리고 베어링률 등 가공특성에 대해 조사하였다. 고망간강에 Ti 첨가 시 0.5%를 초과 시 결정립 미세화로 인한 합금의 강도가 향상되었으며 내부에 미세 탄화물이 형성시킴으로써 Mn만 첨가된 합금에 비해 표면의 마모에 대한 저항성을 높이는 결과를 나타냄을 확인하였다. 망간강에서 Ti의 함유량이 증가함으로 인해 인장강도가 증가함에는 큰 차이가 없었으나 마모성의 부분에서는 Ti이 Mn에 비해 마모성에는 미량이지만 더 큰 영향을 끼치며 Ti의 함량에 따라 탄화물의 크기 및 분포가 조대하고 균일하게 분포하였다. 망간강을 소재로 하는 부품의 수명향상을 위해 망간강에 Ti 첨가함으로써 강도 및 표면특성을 향상시킬수 있음을 확인하였다. Ti이 수지상정 결정립의 미세화로 인한 내마모성이 우수한 재질을 개발하는데 효과있음을 알 수 있었다. Ti가 첨가된 샘플에서 탄화물은 표면 거칠기에 대한 내성을 증가시키는 것으로 나타났으며 Mn강의 특성상 표면경화가 일어나기 시작하여 수명이 연장되는 것으로 보인다.

극저온용 오스테나이트계 고망간강의 인장 및 충격 특성에 미치는 C, Mn, Al 첨가의 영향 (Effect of C, Mn and Al Additions on Tensile and Charpy Impact Properties of Austenitic High-manganese Steels for Cryogenic Applications)

  • 이승완;황병철
    • 한국재료학회지
    • /
    • 제29권3호
    • /
    • pp.189-195
    • /
    • 2019
  • The effect of C, Mn, and Al additions on the tensile and Charpy impact properties of austenitic high-manganese steels for cryogenic applications is investigated in terms of the deformation mechanism dependent on stacking fault energy and austenite stability. The addition of the alloying elements usually increases the stacking fault energy, which is calculated using a modified thermodynamic model. Although the yield strength of austenitic high-manganese steels is increased by the addition of the alloying elements, the tensile strength is significantly affected by the deformation mechanism associated with stacking fault energy because of grain size refinement caused by deformation twinning and mobile dislocations generated during deformation-induced martensite transformation. None of the austenitic high-manganese steels exhibit clear ductile-brittle transition behavior, but their absorbed energy gradually decreases with lowering test temperature, regardless of the alloying elements. However, the combined addition of Mn and Al to the austenitic high-manganese steels suppresses the decrease in absorbed energy with a decreasing temperature by enhancing austenite stability.

고압 수소 가스 하 인장 시험을 이용한 두 오스테나이트계 고망간강의 수소취화 특성 평가 (Hydrogen Embrittlement of Two Austenitic High-Manganese Steels Using Tensile Testing under High-Pressure Gaseous Hydrogen)

  • 이승용;백운봉;남승훈;황병철
    • 한국재료학회지
    • /
    • 제26권7호
    • /
    • pp.353-358
    • /
    • 2016
  • The hydrogen embrittlement of two austenitic high-manganese steels was investigated using tensile testing under high-pressure gaseous hydrogen. The test results were compared with those of different kinds of austenitic alloys containing Ni, Mn, and N in terms of stress and ductility. It was found that the ultimate tensile stress and ductility were more remarkably decreased under high-pressure gaseous hydrogen than under high-pressure gaseous argon, unlike the yield stress. In the specimens tested under high-pressure gaseous hydrogen, transgranular fractures were usually observed together with intergranular cracking near the fracture surface, whereas in those samples tested under high-pressure gaseous argon, ductile fractures mostly occurred. The austenitic high-manganese steels showed a relatively lower resistance to hydrogen embrittlement than did those with larger amounts of Ni because the formation of deformation twins or microbands in austenitic high-manganese steels probably promoted planar slip, which is associated with localized deformation due to gaseous hydrogen.

냉간압연한 고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 서브제로처리의 영향 (Effect of Subzero Treatment on the Mechanical Properties of Cold-Rolled High Manganese Austenitic Stainless Steel)

  • 황태현;정목환;이종영;이향백;강창룡
    • 열처리공학회지
    • /
    • 제25권5호
    • /
    • pp.233-238
    • /
    • 2012
  • The effect of subzero treatment on the mechanical properties of cold rolled high manganese austenitic stainless steel was investagated. ${\alpha}$'-martensite was formed by cold rolling, and it was formed with surface relief and specific direction or crossing each other. The volume fraction of martensite increased by subzero treatment, and it was increased with longer time of subzero treatment and higher temperature of subzero treatment. The hardness and strength increased by subzero treatment, while the elongation decreased. With the increase of volume fraction of martensite, the hardness and strength was increased steeply with proportional relationship, elongation was decreased slowly. The results show that the hardness and strength was strongly controlled by the volume fraction of martensite, and the elongation was affected by transformation behavior of deformation induced martensite in the initial stage of deformation.

고에너지흡수 신소재 적용 해양플랜트 파형 방폭벽의 폭발 저항 성능 (Explosion Resistance Performance of Corrugated Blast Walls for Offshore Structures made of High Energy Absorbing Materials)

  • 노명현;박규식;이재익
    • 복합신소재구조학회 논문집
    • /
    • 제6권1호
    • /
    • pp.38-44
    • /
    • 2015
  • In this paper, a finite element dynamic simulation study was performed to gain an insight about the blast wall test details for the offshore structures. The simulation was verified using qualitative and quantitative comparisons for different materials. Based on in-depth examination of blast simulation recordings, dynamic behaviors occurred in the blast wall against the explosion are determined. Subsequent simulation results present that the blast wall made of high energy absorbing high manganese steel performs much better in the shock absorption. In this paper, the existing finite element shock analysis using the LS-DYNA program is further extended to study the blast wave response of the corrugated blast wall made of the high manganese steel considering strain rate effects. The numerical results for various parameters are verified by comparing different material models with dynamic effects occurred in the blast wall from the explosive simulation.

고온-고압 수소 주입된 Fe-30Mn-0.2C-(1.5Al) 고망간강의 인장 거동에 미치는 표면 조건의 영향 (Effect of Surface Condition on Tensile Properties of Fe-30Mn-0.2C-(1.5Al) High-Manganese Steels Hydrogen-Charged Under High Temperature and Pressure)

  • 이승용;이상혁;황병철
    • 한국재료학회지
    • /
    • 제27권6호
    • /
    • pp.318-324
    • /
    • 2017
  • In this study, two Fe-30Mn-0.2C-(1.5Al) high-manganese steels with different surface conditions were hydrogen-charged under high temperature and pressure; then, tensile testing was performed at room temperature in air. The yield strength of the 30Mn-0.2C specimen increased with decreasing surface roughness(achieved via polishing), but that of the 30Mn-0.2C-1.5Al specimen was hardly affected by the surface conditions. On the other hand, the tendency of hydrogen embrittlement of the two high-manganese steels was not sensitive to hydrogen charging or surface conditions from the standpoints of elongation and fracture behavior. Based on the EBSD analysis results, the small decrease in elongation of the charged specimens for the Fe-30Mn-0.2C-(1.5Al) high-manganese steels was attributed to the enhanced dislocation pile-up around grain boundaries, caused by hydrogen.

마르텐사이트와 오스테나이트의 2상 조직을 갖는 고 Mn 오스테나이트계 스테인리스강의 인장성질 (Tensile Properties of High Mn Austenitic Stainless Steel with Two Phases of Martensite and Austenite)

  • 김영화;강창룡
    • 한국해양공학회지
    • /
    • 제27권4호
    • /
    • pp.9-13
    • /
    • 2013
  • The tensile properties of high manganese austenitic stainless steel with the two phase structures of deformation-induced martensite and reversed austenite were studied. Reversed austenite with an ultra-fine grain size of less than $0.3{\mu}m$ was obtained by reversion treatment. The two phases structures of deformation-induced martensite and reversed austenite were obtained by an annealing treatment in the range of $500^{\circ}C-700^{\circ}C$ for various times in 70% cold- rolled high-manganese austenitic stainless steel. The volume fraction of the reversed austenite increased rapidly with increases in the annealing temperature and time. In the stainless steel with the two phases of austenite and martensite, the strength decreased rapidly, while the elongation increased slowly and then rapidly increased with an increase in the volume fraction of the reversed austenite. Therefore, the strength and elongation were strongly controlled by the volume fraction of reversed austenite. A good combination of high strength and elongation could be obtained by the mixed structure of reversed austenite and deformation-induced martensite.

High Nitrogen-Bearing Austenitic Stainless Steels Resistant to Marine Corrosion

  • Kodama, Toshiaki;Katada, Yasuyuki;Baba, Haruo;Sagara, Masayuki
    • Corrosion Science and Technology
    • /
    • 제2권6호
    • /
    • pp.272-276
    • /
    • 2003
  • High nitrogen-bearing stainless steel (HNS) containing more than Imass% N was successfully created by means of pressurized electro-slag remelting (P-ESR) without the addition of manganese. Excellent localized corrosion resistant properties of the HNS were confirmed in terms of pitting and crevice corrosion in artificial seawater. The repassivation kinetics proved higher repassivation rate for HNS.

알루미늄과 탄소 함량에 따른 Fe-23Mn계 고망간강의 열간 압연 시 발생하는 균열 현상 분석 (Analysis of Cracking Phenomenon Occurring During Hot Rolling of Fe-23Mn High-manganese Steels with Different Aluminium and Carbon Contents)

  • 임현석;이승완;황병철
    • 열처리공학회지
    • /
    • 제29권4호
    • /
    • pp.176-180
    • /
    • 2016
  • In this study, a microstructural investigation was conducted on the cracking phenonmenon occurring during hot rolling of Fe-23Mn high-manganese steels with different aluminium and carbon contents. Particular emphasis was placed on the phase stability of austenite and ferrite dependent on the chemical composition. An increase in the aluminum content promoted the formation of ferrite band structures which were easily deformed or cracked. In the steels containing high carbon contents of 0.4 wt.% or higher, on the other hand, the volume fraction and thickness of ferrite bands decreased and thus the cracking frequency was significantly reduced. Based on these findings, it is said that the microstructural evolution occurring during hot rolling of high-manganese steels with different aluminium and carbon contents plays an important role in the cracking phenomenon. To prevent the cracking, therefore, the formation of second phases such as ferrite should be minimized during the hot rolling by the appropriate control of the chemical composition and process parameters

역변태 오스테나이트와 가공유기 마르텐사이트의 2상 혼합조직을 갖는 스테인리스강의 기계적 성질과 감쇠능 (Relationship Between Mechanical Properties and Damping Capacity in Stainless Steel with Two Phases of Reversed Austenite and Deformation Induced Martensite)

  • 남궁원;정목환;이향백;김재남;강창룡
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.114-120
    • /
    • 2013
  • This study was carried out to investigate the relationship between mechanical properties and damping capacity in high manganese austenitic stainless steel with two phase mixed structure of reversed austenite and deformation induced martensite. Reversed austenite of ultra-fine grain size less than $0.3{\mu}m$ was obtained by reversion treatment. Two phase structure of deformation induced martensite and reversed austenite was obtained by annealing treatment at range of $500^{\circ}C{\sim}700^{\circ}C$ for various time in cold rolled high manganese austenite stainless steel. In stainless steel with two phase mixed structure of martensite and austenite, damping capacity decreased rapidly with the increasing hardness and strength. With the increasing elongation, damping capacity was increased rapidly and then, slowly increased.