Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.7.353

Hydrogen Embrittlement of Two Austenitic High-Manganese Steels Using Tensile Testing under High-Pressure Gaseous Hydrogen  

Lee, Seung-Yong (Department of Materials Science and Engineering Seoul National University of Science and Technology)
Baek, Un-Bong (Division of Industrial Metrology Korea Research Institute of Standards and Science)
Nam, Seung Hoon (Division of Industrial Metrology Korea Research Institute of Standards and Science)
Hwang, Byoungchul (Department of Materials Science and Engineering Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.26, no.7, 2016 , pp. 353-358 More about this Journal
Abstract
The hydrogen embrittlement of two austenitic high-manganese steels was investigated using tensile testing under high-pressure gaseous hydrogen. The test results were compared with those of different kinds of austenitic alloys containing Ni, Mn, and N in terms of stress and ductility. It was found that the ultimate tensile stress and ductility were more remarkably decreased under high-pressure gaseous hydrogen than under high-pressure gaseous argon, unlike the yield stress. In the specimens tested under high-pressure gaseous hydrogen, transgranular fractures were usually observed together with intergranular cracking near the fracture surface, whereas in those samples tested under high-pressure gaseous argon, ductile fractures mostly occurred. The austenitic high-manganese steels showed a relatively lower resistance to hydrogen embrittlement than did those with larger amounts of Ni because the formation of deformation twins or microbands in austenitic high-manganese steels probably promoted planar slip, which is associated with localized deformation due to gaseous hydrogen.
Keywords
austenitic; high-manganese steel; hydrogen embrittlement; high-pressure; gaseous hydrogen;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 C. D. Beachem, Metall. Trans., 3, 437 (1972).
2 C. San Marchi, T. Michler, K. A. Nibur and B. P. Somerday, Int. J. Hydrogen Energy, 35, 9736 (2010).   DOI
3 M. Martin, S. Weber, W. Theisen, T. Michler and J. Naumann, Int. J. Hydrogen Energy, 36, 15888 (2011).   DOI
4 V. G. Gavriljuk, V. N. Shyvanyuk and S. M. Teus, Mater. Sci. Forum, 638, 104 (2010).
5 T. Michler, A. A. Yukhimchuk and J. Naumann, Corr. Sci., 50, 3519 (2008).   DOI
6 D. S. Bae, C. E. Sung, H. J. Bang, S. P. Lee, J. K. Lee, I. S. Son, Y. R. Cho, U. B. Baek and S. H. Nahm, Met. Mater. Int., 20, 653 (2014).   DOI
7 L. Zhang, M. Wen, M. Imade, S. Fukuyama and K. Yokogawa, Acta Mater., 56, 3414 (2008).   DOI
8 T. Michler and J. Naumann, Int. J. Hydrogen Energy, 33, 2111 (2008).   DOI
9 T. Omura and J. Nakamura, ISIJ Int., 52, 234 (2012).   DOI
10 G. Han, S. He, S. Fukuyama and K. Yokogawa, Acta Mater., 46, 4559 (1998).   DOI
11 Y. H. Kim, J. H. Kim, T. H. Hwang, J. Y. Lee and C. Y. Kang, Met. Mater. Int., 21, 485 (2015).   DOI
12 B. Kim, T. T. T. Trang and H. J. Kim, Met. Mater. Int., 20, 35 (2014).   DOI
13 B. Hwang, T. H. Lee, S. J. Park, C. S. Oh and S. J. Kim, Mater. Sci. Eng. A, 528, 7257 (2011).   DOI
14 T. Michler, C. San Marchi, J. Naumann, S. Weber and M. Martin, Int. J. Hydrogen Energy, 37, 16231 (2012).   DOI
15 M. P. Phaniraj, H. J. Kim, J. Y. Suh, J. H. Shim, S. J. Park and T. H. Lee, Int. J. Hydrogen Energy, 40, 13635 (2015).   DOI
16 J. E. Jung, J. Park, J. S. Kim, J. B. Jeon, S. K. Kim amd Y. W. Chang, Met. Mater. Int., 20, 27 (2014).   DOI
17 M. Jo, Y. M. Koo and S. K. Kwon, Met. Mater. Int., 21, 227 (2015).   DOI
18 A. Dumay, J. -P. Chateau, S. Allain, S. Migot and O. Bouaziz, Mater. Sci. Eng. A, 483, 184 (2008).
19 E. Mazancova and K. Mazanec, Mater. Eng., 16, 26 (2009).
20 ASTM Standard G142-98, ASTM International, West Conshohocken, PA, USA, (2011).
21 B. C. De Cooman, J. K. Kim and K. H. Chin, High Mn TWIP Steels for Automotive Applications, INTECH Open Access Publisher (2011).
22 A. R. Troiano, Trans. ASM, 52, 54 (1960).