• Title/Summary/Keyword: High light efficiency

Search Result 1,339, Processing Time 0.035 seconds

The Design cnd Manufacture on the Trial Manufacture of an Automatic Escalator System for the Maintenance Conservative Technology Advancement of the Solar Cell and Street Light (태양집광판과 가로등의 유지보순 기술 향상을 위한 자동 승하강장치 시작품 설계 제작)

  • Lee, Jae-Yong;Byun, Chang-Soo;Song, Hyun-Jig
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.61-69
    • /
    • 2008
  • In this paper, an automatic escalator system is manufactured for concentrate lighting efficiency and maintenance improvement technology of street light used a solar condenser. It can be linked with street light used a solar condenser, improved concentrate lighting efficiency by regulating concentrate light angle of a solar condenser. It can be remove and attach to solar condenser and street light. By developing street light used a solar condenser with an automatic escalator system, the lighting efficiency of street light and the concentrate lighting efficiency of solar condenser are High. The maintenance fee of street light significantly reduce and traffic congestion during working hours of street light is prevent.

Highly Efficient Green Phosphorescent Organic Light Emitting Diodes

  • Lee, Se-Hyung;Park, Hyung-Dol;Kang, Jae-Wook;Kim, Hyong-Jun;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.496-498
    • /
    • 2008
  • We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high quantum efficiency. Wide-energy-gap material, 1,1-bis[(di-4-tolylamino) phenyl]cyclohexane (TAPC), with high triplet energy level was used as a hole transporting layer. Electrophosphorescent devices fabricated using TAPC as a hole-transporting layer and N,N'-dicarbazolyl-4,4'-biphenyl (CBP) doped with fac-tris(2-phenylpyridine) iridium [Ir(ppy)3] as the emitting layer showed the maximum external quantum efficiency ($\eta_{ext}$) of 19.8 %, which is much higher than the devices adopting 4,4'-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (NPB) (${\eta}B_{ext}=14.6%$) as a hole transporting layer.

  • PDF

Texturing Effects on High Efficiency Silicon Buried Contact Solar Cell (전극 함몰형 고효율 실리콘 태양전지에서의 texturing 효과)

  • 지일환;조영현;이수홍
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.172-176
    • /
    • 1995
  • Schemes to trap weakly absorbed light into the cell have played an important role in improving the efficiency of both amorphous and crystlline silicon solar cells. One class of scheme relies on randomizing the direction of light within the cell by use of Lambertian(diffuse)surfaces. A second class of scheme relies on the use fo well defined geometrical features to control the direction of light wihin the cell, Widly used geometrical features in crystalline silicon solar cells are the square based pyramids and V-shaped grooves formed in (100) orientated surfaces by intersecting(III) crystallographic planes exposed by anisotropic etching. 18.5% conversion efficiency of Buried Contact Solar Cell with pyramidally textured surface has been achieved. 18.5% efficiency of silicon solar cell is one the highest record in the world The efficieny of cell without textured surface was 16.6%, When adapting textured surface to the Cell, the efficiency has been improved over 12%.

  • PDF

Effect of Controlled Light Environment on the Growth and Ginsenoside Content of Panax ginseng C. A. Meyer (광환경 조절이 인삼의 생육과 진세노사이드 함량에 미치는 영향)

  • Jang, In Bae;Yu, Jin;Kweon, Ki Bum;Suh, Su Jeoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.4
    • /
    • pp.277-283
    • /
    • 2016
  • Background: The photosynthetic efficiency cool-season, semi-shade ginseng is normal at low morning temperatures, but drops at high afternoon temperatures. Therefore, optimal plant performance would be ensured if it were possible to control daily light transmission rates (LTR). Methods and Results: Plants were grown in a controlled light environment that replicated 11 AM conditions and comparatively analyzed against plant grown under normal conditions. Growth in the controlled light environment resulted in a 2.81 fold increase in photosynthetic efficiency with no change in chlorophyll content, although LTR were high due to low morning temperatures. Increased aerial plant growth was observed in the ginseng plants adapted to the controlled light environment, which in turn influenced root weight. An 81% increase in fresh root weight (33.3 g per plant on average) was observed in 4-year-old ginseng plants grown in controlled light environment compared to the plants grown following conventional practices (18.4 g per plant on average). With regard to the inorganic composition of leaves of 4-year-old ginseng plants grown in controlled light environment, an increased in Fe content was observed, while Mn and Zn content decreased, and total ginsenoside content of roots increased 2.37 fold. Conclusions: Growth of ginseng under a favorable light environment, such as the condition which exist naturally at 11 AM and are suitable for the plant's photosynthetic activity creates the possibility of large scale production, excellent-quality ginseng.

Independent Control of Wrinkle Wavelength and Height for Optoelectronic Devices via Changing Stress Relaxation Time (응력 해소 시간 변화를 통한 광전자소자용 주름구조 주기와 높이의 독립적 제어 연구)

  • Gu, Bongjun;Kim, Jongbok
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.39-43
    • /
    • 2022
  • In optoelectronic devices including displays and solar cells that convert electricity into light or light into electricity, it is important to control optical behavior of light to improve device efficiency. Specifically, the control of internal emitting light in the OLEDs can induce more light to go out, improving luminous efficiency. In addition, the control of optical behavior of incident light in solar cells can increase optical path in the light absorption layer, increasing power-conversion efficiency. In this study, we generated wrinkles as a physical structure to control optical behavior of light and independently controlled their wavelength and height by changing stress relaxation time. To explore the effect of wavelength and height on optical behavior, we conducted UV/Vis spectroscopy analysis of wrinkles with various heights at a constant wavelength or various wavelengths at a comparable height, figuring out a wrinkle with high aspect ratio has more dispersive light and less straight light. It indicates that high aspect ratio is required to change the optical behavior and increase the optical path.

The Development of Edgelit Advertisement Device with High Flux LEDs (고휘도 LED를 이용한 Edgelit 광고장치의 개발)

  • 박준석;송상빈;유용수;김완호;여인선
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.149-152
    • /
    • 2000
  • This paper is on the edgelit device with external control function and change of light color by dimming control of high flux LED. It the light is projected the transparent body via reflector, the mixture of light is uniform and it is proved by simulation and experimentation. To improve the light efficiency of the device, the research on reflector materials and the distortion of LED input owing to the transistor's characteristics are need.

  • PDF

The Influence of Fluorescent Dye Doping on Efficiency of Organic Light-Emitting Diodes (형광염료 도핑이 유기발광소자의 효율에 미치는 영향)

  • Lee, jeong-gu
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.301-305
    • /
    • 2008
  • An organic light-emitting diode(OLED) has advantages of low power driving, self light-emitting, wide viewing angle, excellent high resolution, full color, high reproduction, fast response speed, simple manufacturing process, or the like. However, there are still a number of challenges to get over in order to put it to practical use as a high performance display. First of all, the most important thing is to improve the efficiency of the OLED element in order to commercialize it. To this end, its efficiency can be improved by lowering the driving voltage through the improvement of structure of the OLED element and the application of new organic substance. Therefore, in this study, we have manufactured a red OLED element by applying fluorescent dyes to the emitting layer of the element having the structure of ITO/TPD/Znq2+DCJTB/Znq2/Al and the structure of ITO/CuPc/NPB/Alq3+DCJTB/Alq3/Al, in order to light-emitting various colors or improve the brightness and the efficiency, and then we have evaluated its electrical and optical characteristics.

  • PDF

High-brightness Phosphor-conversion White Light Source Using InGaN Blue Laser Diode

  • Ryu, Han-Youl;Kim, Dae-Hwan
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.415-419
    • /
    • 2010
  • A phosphor-conversion white light source is demonstrated using an InGaN-based blue laser diode (LD) and a yellow-emitting phosphor excited by the blue LD. The photometric and colorimetric properties of this blue-LD-based white light source are characterized. When injection current of the LD is 100 mA, luminous flux and luminous efficiency of the white light are found to be over 5 lm and 10 lm/W, respectively. When injection current is >90 mA, luminance is estimated to be larger than 10 Mcd/$cm^2$. In addition, color characteristics of the white light such as chromaticity coordinates, a correlated color temperature, and a color rendering index are found to be quite stable as current and temperature of the LD varies. The demonstrated LD-based white light source is expected to be used in high-brightness illumination applications with good color stability.

High efficiency organic light emitting-diodes (OLEDs) using multilayer transparent electrodes

  • Yun, Chang-Hun;Cho, Hyun-Su;Yoo, Seung-Hyup
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.823-825
    • /
    • 2009
  • We present multilayer transparent electrodes (MTEs) that resulted in organic light-emitting diodes (OLEDs) with the 90 % higher forward luminous efficiency and 30% higher external quantum efficiency (EQE) than conventional ITO based devices respectively. Optimization method of such MTE structure is investigated in consideration of both injection and optical structure.

  • PDF

PRESENT AND FUTURE OF SUPER HIGH-EFFICIENCY TANDEM SOLAR CELLS

  • Yamaguchi, Masafumi
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.37-45
    • /
    • 1998
  • In this paper, present status of super high-efficiency tandem solar cells has been reviewed and key issues for realizing super high-efficiency have also been discussed. In addition, the terretrial R&D activities of tandem cells, in the New Sunshine Program of MITI(Ministry of International Trade and Industry) and NEDO(New Energy and Industrial Technology Development Organization) in Japan are reviewed briefly. The mechanical stacked 3-junction cells of monolithically grown InGaP/GaAs 2-junction cells and InGaAs cells have reached the highest efficiency achieved in Japan of 33.3% at 1-sun AM1.5. This paper also reports high-efficiency InGaP/GaAs 2-junction solar cells with a world-record efficiency of 26.9% at AM0, 28$^{\circ}C$ and radiation damage recovery phenomena of the tandem cell performance due to minority-carrier injection under light illumination or forward bias, which causes defect annealing in InGaP top cells. Future prospects for realizing super-high efficiency and low-cost tandem solar cells are also described.

  • PDF