Browse > Article
http://dx.doi.org/10.17702/jai.2022.23.2.39

Independent Control of Wrinkle Wavelength and Height for Optoelectronic Devices via Changing Stress Relaxation Time  

Gu, Bongjun (Department of Materials Science and Engineering, Kumoh National Institute of Technology)
Kim, Jongbok (Department of Materials Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of Adhesion and Interface / v.23, no.2, 2022 , pp. 39-43 More about this Journal
Abstract
In optoelectronic devices including displays and solar cells that convert electricity into light or light into electricity, it is important to control optical behavior of light to improve device efficiency. Specifically, the control of internal emitting light in the OLEDs can induce more light to go out, improving luminous efficiency. In addition, the control of optical behavior of incident light in solar cells can increase optical path in the light absorption layer, increasing power-conversion efficiency. In this study, we generated wrinkles as a physical structure to control optical behavior of light and independently controlled their wavelength and height by changing stress relaxation time. To explore the effect of wavelength and height on optical behavior, we conducted UV/Vis spectroscopy analysis of wrinkles with various heights at a constant wavelength or various wavelengths at a comparable height, figuring out a wrinkle with high aspect ratio has more dispersive light and less straight light. It indicates that high aspect ratio is required to change the optical behavior and increase the optical path.
Keywords
Wrinkle; Stress relaxation time; Morphology; Optical behavior; Display; Solar cell;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. J. Choi, B. Y. Jeong, J. M. Cheon, K. Park, J. H. Chun. Journal of Adhesion and Interface. 18, 1 (2017).   DOI
2 A. Eceiza, M. D. Martin, K. de la Caba, G. Kortaberria, N. Gabilondo, M. A. Corcuera, I. Mondragon. Polymer Engineering and Science. 48, 2 (2008).
3 X. Yurun, D. Chen. Macromolecular Chemistry and Physics. 217, 10 (2016).
4 K. Chang, H, Jia, S. -Y. Gu. European Polymer Journal. 112 (2019).
5 J. H. Lee, S. Hong, Y. H. Kim. Polymer (Korea). 37, 2 (2012).
6 D. W. Kang, Y. N. Yin. Applied Chemistry for Engineering. 21, 1 (2010).
7 S. -J. Kim, B. -K. Kim. Applied Chemistry for Engineering. 3, 4 (1992).
8 H. -S. Joo, D. -H. Lim, Y. J. Park, H. -J. Kim. Journal of Adhesion and Interface. 6, 1 (2005).
9 S. -H. Shin, B. -Y. Jeong, I. Chung, N. -J. Jo, J. -M. Cheon, J. -H. Chun, Journal of Adhesion and Interface. 11, 3 (2010).
10 E. J. Kim, I. K. Park, J. H. Park. Journal of Adhesion and Interface. 19, 1 (2018).
11 W. J. Choi, S.-H. Cha, J. -C. Lee, Polymer Science and Technology. 25, 2 (2014).
12 S. -H. Lee, D. -S. Lee. Rubber Technology. 20, 3 (2019).
13 Y. T. Shin, M. G. Hong, J. J. Choi, W. K. Lee, B. W. Yoo, M. G. Lee, K. C. Song. Korean Chemical Engineering Research. 49, 4 (2011).
14 J. W. Chung. Polymer Science and Technology. 25, 2 (2014).
15 H. M. Kim, S. R. Choi, S. M. Lee. Elastomer. 37, 1 (2002).
16 R. P. Wool. Soft Matter. 4, 400 (2008).   DOI
17 J. H. Lee, S. Y. Choi, K. W. Shin, J. H. Yang, J. W. Chung. Prospectives of Industrial Chemistry. 20, 1 (2017).
18 J. M. Cheon, B. Y. Jeong, C. S. Yoo, D.J. Park, J.H. Chun. Journal of Adhesion and Interface. 9, 4 (2008).
19 N. H. Shin, J. K. Jo, A. Y. Hur, H. Li, C. -S. Ha, I. Kim. Elastomers and Composites. 44, 3 (2009).
20 Y. -K. Song, D. -M. Kim, C. -M. Chung. Polymer Science and Technology. 25, 2 (2014).
21 H. Im, H. Lee, J. Kim. Polymer (Korea). 31, 6 (2007).