• Title/Summary/Keyword: High intensity light source

Search Result 132, Processing Time 0.025 seconds

The Effects of Physicochemical Factors and Cell Density on Nitrite Transformation in a Lipid-Rich Chlorella

  • Liang, Fang;Du, Kui;Wen, Xiaobin;Luo, Liming;Geng, Yahong;Li, Yeguang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2116-2124
    • /
    • 2015
  • To understand the effects of physicochemical factors on nitrite transformation by microalgae, a lipid-rich Chlorella with high nitrite tolerance was cultured with 8 mmol/l sodium nitrite as sole nitrogen source under different conditions. The results showed that nitrite transformation was mainly dependent on the metabolic activities of algal cells rather than oxidation of nitrite by dissolved oxygen. Light intensity, temperature, pH, NaHCO3 concentrations, and initial cell densities had significant effects on the rate of nitrite transformation. Single-factor experiments revealed that the optimum conditions for nitrite transformation were light intensity: 300 μmol/m2/s; temperature: 30℃ pH: 7-8; NaHCO3 concentration: 2.0 g/l; and initial cell density: 0.15 g/l; and the highest nitrite transformation rate of 1.36 mmol/l/d was achieved. There was a positive correlation between nitrite transformation rate and the growth of Chlorella. The relationship between nitrite transformation rate (mg/l/d) and biomass productivity (g/l/d) could be described by the regression equation y = 61.3x (R2 = 0.9665), meaning that 61.3 mg N element was assimilated by 1.0 g dry biomass on average, which indicated that the nitrite transformation is a process of consuming nitrite as nitrogen source by Chlorella. The results demonstrated that the Chlorella suspension was able to assimilate nitrite efficiently, which implied the feasibility of using flue gas for mass production of Chlorella without preliminary removal of NOX.

Content of Phycocyanins and Growth of Spirulina platensis with Culture Conditions (배양 조건에 따른 Spirulina piatensis의 성장 및 phycocyanin 함량 변화)

  • JOO Dong Sik;JUNG Chung Kuk;LEE Chang Ho;CHO Soon Yeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.475-481
    • /
    • 2000
  • The growth of the microalgal Spiulina platensis in a batch photobioreactor had been studied to determine the influence of temperature, light intensity, and culture medium on the growth and c-phycocyanin content of the biomass. The most favorable conditions for high biomass and c-phycocyanin production were as follows: light intensity of 3500 lux, temperature of $35^{\circ}C,\;NaHCO_3\;of\;1.0{\%}$ for pH control, $0.2{\~}0.3{\%}\;Na_2CO_3$ for carbon source, and $0.2{\~}0.3{\%}\;NaCO_3$ for nitrogen source. The c-phycocyanin and chlorophyll content on most favorable condition were about $11{\%},\;1.0{\%}$, respectively.

  • PDF

The Effect of Color Reproduction Properties at TFT-LCD using High Color Reproduction CCFL

  • Han, Jeong-Min;Ok, Chul-Ho;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.215-217
    • /
    • 2007
  • Recently, color reproduction properties have attracted lots of attention with mass production of LCD especially corresponding to TV application and achievement of color reproduction properties such as CRT have been considered one of technical goals for high quality display. However, revision of the color reproduction properties only with CF(color filter) have fundamental limitations and resultant decrease in the transmittance of panel causes demand on high brightness of BL(Back Light). In this paper, we present such a method in which by optimization of original light spectrum from the BL source will improves the color reproduction properties corresponding to them of the CRT. When the intensity of RED and Green-Blue from ramp is revised densely, the characteristics different from CCFL(Cold Cathode Fluorescent Lamp) used before become added so that about 11 % of the color reproduction properties is improved compare to the existing LCD panel.

Nonthermal Pasteurization of Lactic acid bacteria by High Intensity Light Pulse (광 펄스에 의한 젖산균의 비열 살균)

  • Cho, Hyung-Yong;Shin, Jung-Kue;Song, Young-Ae;Yoon, Seon-Joo;Kim, Joong-Man;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.631-636
    • /
    • 2002
  • Lethality of high intensity light pulse on the pre-determined microbial populations has been investigated. Prior to the treatment, Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc mesenteroides and Pediococcus pentosaceus were cultivated separately onto the surface of Lactobacilli MRS agar. Pre-determined microbial populations were applied to the test media and these sample were exposed to high intense light source with an exposure time ranging from 1 to $2500\;{\mu}s$. Results showed that at least 200 light pulses of $1\;{\mu}s$ duration were required to reduce L. Plantarum cells by 90% at 25 kV, the greater the number of light pulses, the larger the reduction in viable cell numbers. Viable cells of L. plantarum and the others were reduced by more than 5 and 6 log cycles at the upper exposure level of $750\;{\mu}s$, respectively. These study shows that pulsed light emissions can significantly reduce populations of lactic acid bacteria on exposed surface with exposure times. Killing efficiency for L. plantarum significantly increased with decreasing the distance between the lamp and the surface of samples.

An Integrated System for Radioluminescence, Thermoluminescence and Optically Stimulated Luminescence Measurements

  • Park, Chang-Young;Park, Young-Kook;Chung, Ki-Soo;Lee, Jong-Duk;Lee, Jungil;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.160-169
    • /
    • 2018
  • Background: This study aims to develop an integrated optical system that can simultaneously or selectively measure the signals obtained from radioluminescence (RL), thermoluminescence (TL), and optically stimulated luminescence (OSL), which are luminescence phenomena of materials stimulated by radioactivity, heat, and light, respectively. The luminescence mechanism of various materials could be investigated using the glow curves of the luminescence materials. Materials and Methods: RL/TL/OSL integrated measuring system was equipped with a X-ray tube (50 kV, $200{\mu}A$) as an ionizing radiation source to irradiate the sample. The sample substrate was used as a heating source and was also designed to optically stimulate the sample material using various light sources, such as high luminous blue light emitting diode (LED) or laser. The system measured the luminescence intensity versus the amount of irradiation/stimulation on the sample for the purpose of measuring RL, TL and OSL sequentially or by selectively combining them. Optical filters were combined to minimize the interference of the stimulation light in the OSL signal. A long-pass filter (420 nm) was used for 470 nm LED, an ultraviolet-pass filter (260-390 nm) was used for detecting the luminescence of the sample by PM tube. Results and Discussion: The reliability of the system was evaluated using the RL/OSL characteristics of $Al_2O_3:C$ and the RL/TL characteristics of LiF:Mg,Cu,Si, which were used as dosimetry materials. The RL/OSL characteristics of $Al_2O_3:C$ showed relatively linear dose-response characteristics. The glow curve of LiF:Mg,Cu,Si also showed typical RL/OSL characteristics. Conclusion: The reliability of the proposed system was verified by sequentially measuring the RL characteristics of radiation as well as the TL and OSL characteristics by concurrent thermal and optical stimulations. In this study, we developed an integrated measurement system that measures the glow curves of RL/TL/OSL using universal USB-DAQs and the control program.

The Development of Container-type Plant Factory and Growth of Leafy Vegetables as Affected by Different Light Sources (컨테이너 식물공장의 개발과 이를 활용한 광원별 엽채류의 생장특성)

  • Um, Yeong-Cheol;Oh, Sang-Seok;Lee, Jun-Gu;Kim, Seung-Yu;Jang, Yoon-Ah
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.333-342
    • /
    • 2010
  • For the energy-saving production of fresh vegetables in poor environment such as the Antarctic, a container-type plant factory was designed and developed. To maximize space usage of the 20 feet container ($L5.9m{\times}W2.4m{\times}H2.4m$), a three-level hydroponic cultivation system was installed and the nutrient solution was supplied by bottom watering. Using this system, 3 lettuce cultivars were grown under different the light source (light intensity). After 2 weeks from the transplanting, fluorescent lamp ($145\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) showed the best fresh weight of top part and leaf area. However, After 4 weeks, fluorescent lamp plus metal halide lamp ($150\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) led to the optimum growth of the each lettuce cultivar. The cultivar, 'Cheongchima', showed the best fresh weight of top part and leaf area, followed by 'Jeokchukmyeon' and 'Lollo rosa'. The chlorophyll concentrations (SPAD) showed no significant difference among the sources of lights. However, 'Cheongchima' showed relatively high chlorophyll concentration. With the above results, we found that the growth of lettuce is depend on light intensity and even at same intensity, the growth is different among the cultivars. Therefore, the selection of optimum cultivar should be considered in the plant factory system that has only weak light density.

Design of a customizable fluorescence detection system for fluorescently labeled tumor cells (형광 발현 암세포 탐지를 위한 맞춤형 검출시스템 개발)

  • Cho, Kyoungrae;Seo, Jeong-hyeok;Choe, Se-woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.261-266
    • /
    • 2019
  • Flow cytometry is an electrical detection system that provides precise and diverse optical properties to cells and micro particles. Flow cytometry, which provides multidimensional information including cell size and granularity through light scattering and fluorescence emission generated by the induction of light of a specific wavelength to the fluorescently treated cells or micro particles, plays an important role in biomedical and biophysical fields. However, it has some drawbacks such as high cost, size of the instrument and limitation in selecting fluorescent dyes. Therefore, in this paper, a low cost compact fluorescent detection system is developed using light-emitting diode and microcontroller. The proposed fluorescence detection system has a replaceable the light source/fluorescence filter/photodetector and constructed by 3D printer, so that the user can design a customized system according to the selected fluorescent dyes. The fluorescence intensity was measured by varying the number of fluorescently labeled cells, and the measured intensities showed a high linearity within the tested concentration ranges.

Isolation and Characterization of Indigenous Marine Diatom Achnanthidium sp. BS-001 Producing a high Content of Omega-3 Fatty Acid and Fucoxanthin Production (오메가-3 지방산 및 푸코잔틴 고함량 토착 규조류 아크난티디움 균주의 분리 및 특성)

  • Kim, Urim;Cho, Dae-Hyun;Heo, Jina;Kim, Hee-Sik
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.14-22
    • /
    • 2019
  • Omega-3 fatty acids and carotenoids, which are known as representative high-value substances derived from microalgae, are being studied from various diatoms. Most of the diatoms contain fucoxanthin and omega-3 fatty acid. Fucoxanthin produced by diatom has been reported as bioactive compounds exhibiting strong antioxidant, anticancer and anti-inflammatory activities. However, the low growth rate and fucoxanthin content of diatoms are one of the big obstacles to the industrial application. In this study, indigenous marine diatom Achnanthidium sp. BS-001 was isolated for a candidate of fucoxanthin producer. Light intensity and temperature for the culture of Achnanthidium sp. BS-001 were optimized on PhotoBiobox. Optimization of silicate concentration for increasing BS-001 biomass productivity was confirmed in F/2 medium with various concentration of sodium silicate. As a result, condition of light intensity, temperature, and silicate concentration for optimal cultivation were $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $18^{\circ}C$ and 0.106 mM, respectively. Maximum biomass productivity reaches to $154.3mg{\cdot}L^{-1}{\cdot}day^{-1}$, and then the content of omega-3 fatty acids and fucoxanthin were $19.4mg{\cdot}g^{-1}$, $9.05mg{\cdot}g^{-1}$, respectively. These results indicate that Achnanthidium sp. BS-001 has the potential to be used as a source of omega-3 fatty acids and fucoxanthin.

Characteristics of photo-thermal reduced Cu film using photographic flash light

  • Kim, Minha;Kim, Donguk;Hwang, Soohyun;Lee, Jaehyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.293.1-293.1
    • /
    • 2016
  • Various materials including conductive, dielectric, and semi-conductive materials, constitute suitable candidates for printed electronics. Metal nanoparticles (e.g. Ag, Cu, Ni, Au) are typically used in conductive ink. However, easily oxidized metals, such as Cu, must be processed at low temperatures and as such, photonic sintering has gained significant attention as a new low-temperature processing method. This method is based on the principle of selective heating of a strongly absorbent film, without light-source-induced damage to the transparent substrate. However, Cu nanoparticles used in inks are susceptible to the growth of a native copper-oxide layer on their surface. Copper-oxide-nanoparticle ink subjected to a reduction mechanism has therefore been introduced in an attempt to achieve long-term stability and reliability. In this work, a flash-light sintering process was used for the reduction of an inkjet-printed Cu(II)O thin film to a Cu film. Using a photographic lighting instrument, the intensity of the light (or intense pulse light) was controlled by the charged power (Ws). The resulting changes in the structure, as well as the optical and electrical properties of the light-irradiated Cu(II)O films, were investigated. A Cu thin film was obtained from Cu(II)O via photo-thermal reduction at 2500 Ws. More importantly, at one shot of 3000 Ws, a low sheet resistance value ($0.2527{\Omega}/sq.$) and a high resistivity (${\sim}5.05-6.32{\times}10^{-8}{\Omega}m$), which was ~3.0-3.8 times that of bulk Cu was achieved for the ~200-250-nm-thick film.

  • PDF

Artificial Light Sources Influence Cherry Tomato (Lycopersicon esculentum var. cv. 'CF Jelly') Growth and Development (인공광원이 방울토마토(Lycopersicon esculentum var. cv. 'CF Jelly') 생육에 미치는 영향)

  • Jeong-Wook Heo;Jeong-Hyun Baek;Young-Sin Hong
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.245-251
    • /
    • 2022
  • BACKGROUND: Selection an suitable light source is essential in the year-round production of horticultural crops in closed production systems such as plant factory with controlled environments. This study was investigated to confirm the effects of artificial light sources on growth of cherry tomato'CF Jelly'(Lycopersicon esculentum var.) under high-pressure sodium lamps (HPS), metal-halide lamps (MH), and LEDs. METHODS AND RESULTS: Light intensity of the light sources was controlled at 220±30 µmol/m2/s with 12 hrs of photoperiod for a day. Flower development was significantly faster in HPS and MH treatments compared to the LEDs. There was no significant difference between the leaf number and leaf shape under the HPS and MH treatments. Reproductive growth of cherry tomato was significantly promoted by the LEDs treatment of blue plus red lights. Fruit yield per plant also increased under the LEDs compared to the others. CONCLUSION(S): Growth, flowering, and fruit setting of the cherry tomato were accomplished by the artificial lights under plant factory conditions. The HPS treatment showed negative effect on fruit quality in terms of blossom-end rot incidence compared to the LEDs or MH treatment. Effect of the LEDs on promotion of fruit weight and yield was also proved. Additional research should be carried out for improving sugar metabolism or decreasing disease in the fruits under plant factory system using only artificial lights.