• 제목/요약/키워드: High heat-load

검색결과 560건 처리시간 0.03초

ASME Boiler & Pressure Vessel Code에 따른 배열회수보일러 기수분리기의 피로 평가 (Fatigue Evaluation of Steam Separators of Heat Recovery Steam Generators According to the ASME Boiler and Pressure Vessel Code)

  • 이부윤
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.150-159
    • /
    • 2018
  • The present research deals with a finite element analysis and fatigue evaluation of a steam separator of a high-pressure evaporator for the Heat Recovery Steam Generator (HRSG). The fatigue during the expected life of the HRSG was evaluated according to the ASME Boiler and Pressure Vessel Code Section VIII Division 2 (ASME Code). First, based on the eight transient operating conditions prescribed for the HRSG, temperature distribution of the steam separator was analyzed by a transient thermal analysis. Results of the thermal analysis were used as a thermal load for the structural analysis and used to determine the mean cycle temperature. Next, a structural analysis for the transient conditions was carried out with the thermal load, steam pressure, and nozzle load. The maximum stress location was found to be the riser nozzle bore, and hence fatigue was evaluated at that location, as per ASME Code. As a result, the cumulative usage factor was calculated as 0.00072 (much less than 1). In conclusion, the steam separator was found to be safe from fatigue failure during the expected life.

연소기 출구 난류 상태에서의 터빈 익열 끝벽 열(물질)전달 특성 (Endwall Heat (Mass) Transfer in a Turbine Cascade Under Combustor-Level High Free-Stream Turbulence)

  • 전상배;이상우;박병규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.759-764
    • /
    • 2001
  • Heat (mass) transfer characteristics have been investigated on the endwall of a large-scale linear turbine cascade passage under a combustor-level high free-stream turbulence with a large length scale. Local heat (mass) transfer coefficients are measured by using the naphthalene sublimation technique. The result shows that local heat (mass) transfer on the endwall is greatly enhanced in the central region of the turbine passage, but there is no noticeable change in the local heat (mass) transfer in the region suffering severe heat load. Under the high free-stream turbulence, the local heat (mass) transfer coefficient shows more uniform distribution and its average value across the whole endwall region is increased by 26% of that at low turbulence condition. The heat (mass) transfer data on the endwall strongly supports that well-organized vortices near the endwall tends to suffer an suppression by the high free-stream turbulence.

  • PDF

디버터의 열유동 및 열응력 해석 1 (Analysis of Heat Flow and Thermal Stress for Divertors)

  • 이상윤;김홍배
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.238-245
    • /
    • 1999
  • For the optimal design of plasma facing components of a fusion reactor, thorough understanding of thermal behavior of high heat. nux components are required. The purpose of this research is to investigate the characteristics of heat flow and thermal stress in divertors which are exposed to high heat load varing with time and space-Numerical simulations of heat now and thermal stress for three types of diverter are performed using finite volume method and finite element method. Respectly, commercial FLUENT code are used in the heat flow simulation, and maximum surface temperature, temperature distribution and cooling rate are calculated. Commercial ABQUS code are used for calculating temperature distribution. thermal stress, strain and displacement. Through this computer simulation. design data for cooling system and Structural provided.

  • PDF

외기조건에 따른 제습냉방시스템의 성능 특성 (Performance Characteristics of the Desiccant Cooling System in Various Outdoor and Load Conditions)

  • 이대영;장영수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.623-628
    • /
    • 2009
  • Desiccant based air conditioning system offers a promising alternative to conventional one using vapour compression refrigeration for energy saving and greenhouse gas reduction. It is a heat driven cycle which has high potential for the use of low grade heat source such as the waste heat from the cogeneration plant or the solar thermal energy. In this study, the cooling performance of a desiccant cooling system incorporating a regenerative evaporative cooler was characterized in various operation conditions through numerical simulation. The cooling capacity and COP were evaluated at various outdoor conditions, regeneration temperatures, and supply flow rates. Based on the performance characteristics, the optimal control scheme was discussed to minimize the cooling cost at part load condition.

  • PDF

가스터빈 복합 열병합 발전의 최적 운전조건에 관한 연구 (A Study for the Optimal Operating Conditions of the Gas Turbine Based Combined Cycle Cogeneration Power Plant)

  • 조영빈;손정락;노승탁
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1582-1590
    • /
    • 2004
  • The purpose of this study is to show the existence of optimal operation conditions for minimum fuel consumption of the gas turbine based combined cycle cogeneration power plant. Optimal operational condition means the optimal distribution of the power generated by each gas turbine and the heat generated by each HRSG. Total fuel consumption is calculated by the sum of the fuels for gas turbines and supplementary boiler. Fuel consumption is calculated by numerical methods of energy equations which contain the power generated from gas and steam turbines, the heat generated by HRSG and the heat extracted from high pressure steam turbine.

팁간극 영역에서의 동익 표면 열부하 측정 (Measurement of Thermal Load in the Tip-Clearance Region of a Rotor Surface)

  • 이상우;권혁구;박진재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.187-192
    • /
    • 2003
  • The heat (mass) transfer characteristics in the tip-leakage flow region of a high-turning first-stage turbine rotor blade has been investigated by employing the naphthalene sublimation technique. The heat transfer data in the tip-leakage flow area for the tip clearance-to-span ratio, h/s, of 2.0% are compared with those in endwall three-dimensional flow region without tip clearance (h/s = 0.0 %). The result shows that the thermal load in the tip-leakage flow region for h/s = 2.0% is more severe than that in the endwall flow region for h/s = 0.0%. The thermal loads even at the leading and trailing edges for h/s = 2.0% are found larger than those for h/s = 0.0%. The tip-leakage flow results in heat transfer augmentations near the tip on both pressure and suction sides in comparison with the mid-span results.

  • PDF

입구 물온도와 열부하가 냉각탑의 팬동력에 미치는 영향 분석 (Effects of Inlet Water Temperature and Heat Load on Fan Power of Counter-Flow Wet Cooling Tower)

  • ;이근식
    • 대한기계학회논문집B
    • /
    • 제37권3호
    • /
    • pp.267-273
    • /
    • 2013
  • 막충진재(film fill)를 갖는 냉각탑용 팬의 효율적인 운전조건을 제시하기 위하여, Merkel의 이론을 바탕으로 한 종전의 최적 총연간비용 모델을 사용하여 입구 물온도와 열부하에 따른 최소팬동력을 구하는 프로그램이 새로이 개발되었으며, 냉각탑의 설계 맵이 본 연구로부터 제시되었다. 전형적인 예들을 통하여 본 프로그램의 타당성이 입증되었다. 주어진 열부하에서 이들 팬동력(z 축)-공기질량플럭스(x 축, 최소팬동력 존재)-입구물온도(y 축, 최소팬동력의 최대값 존재)의 3차원 그래프는 말안장 형상으로 나타났다. 최소팬동력들은 열부하에 따라 증가하였다. 따라서, '고온수 유입과 저유량의 공기로 작동' 될 때가 항상 최소팬동력 조건이 아니며, '주어진 입구물온도에 대하여 최소팬동력에 대응하는 최적의 공기질량플럭스가 (열부하와 무관하게) 존재한다'는 사실이 본 연구결과로부터 밝혀졌다.

조종실 온도 영향성 검증을 위한 캐노피 투명체 코팅 연구 (The Canopy Transparency Coating Study of Cockpit Temperature Effect Verification)

  • 남용석;김태환;김윤희;우성조;김명호
    • 항공우주시스템공학회지
    • /
    • 제2권2호
    • /
    • pp.42-45
    • /
    • 2008
  • Under the non-operating exposure condition in the hot area, the T-50 cockpit temperature is expected over the requirement according to T-50 environmental criteria. So it is necessary to protect the cockpit from the high temperature condition during the non-operating exposure because the high temperature of the cockpit may result in the cockpit equipment malfunction. In this study, the transparency coating is selected as the method for protecting the cockpit from the high temperature exposure and analyzed the effect on the cockpit heat load attenuation. Some kinds of cockpit coating were reviewed and selected and the analysis was performed about the effect before and after coating application under 1% hot day condition based on the T-50 FSD hot soaking test data. The result of analysis show transparency coating is so effective to attenuate the heat load of T-50 cockpit.

  • PDF

유한요소법을 이용한 유기압 현수장치의 열전달 해석 (Heat Transfer Analysis of Hydropneumatic Suspension Unit By Finite Element Method)

  • 배징도;조진래;이홍우;송정인;이진규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.531-536
    • /
    • 2004
  • In-arm type hydropeumatic suspension unit(ISU) is an equipment of armed tracked vehicle to absorb impact load and vibration from the irregular ground. During the operation of ISU, main piston moves forward and backward and oil flowing through damper transmits the external impact load to floating piston. Heat is generated in ISU by the oil pressure drop through the damper orifice and the friction between cylinder wall and two pistons. On the other hand, internal heat dissipatis outside via heat convection. Occurrence of high temperature can deteriorate durability of major components and basic function of ISU. And, it can cause fatal problem in the ISU life time and the sealing performance of piston rings. As well, the spring constant change of nitrogen gas that is caused by the temperature rise exerts the negative effect to the vehicle stability. Therefore, in this paper, we analyze the heat transfer analysis of the entire ISU unit, by finite element method, with the outside flow velocities 8m/s and 10m/s.

  • PDF

LDC 재생형 부하 시험기의 효율 개선에 관한 연구 (A Study on Energy Efficiency Improvement of LDC Recycling Load Tester)

  • 이춘일;홍연찬
    • 한국산학기술학회논문지
    • /
    • 제17권10호
    • /
    • pp.86-92
    • /
    • 2016
  • 하이브리드 자동차나 전기 자동차에는 대용량의 배터리를 장착하여 동력 및 전장품의 전원으로 사용하고 있다. 대용량의 배터리를 이용하여 ECU(Electronic control unit) 및 조명, 라디오, 네비게이션 등의 전장품의 전원으로 사용하기 위해서는 DC 240-400V의 높은 전압을 DC 12-14V의 낮은 전원으로 변환해 주는 DC 컨버터가 필요한데 이것을 LDC(Low Voltage DC-DC Converter)라 한다. LDC는 생산 공정 중에 잠재적인 불량을 줄이기 위해 장시간의 에이징(Aging)을 실시하고 있다. 일반적인 에이징 방법으로는 LDC가 DC-DC 컨버터이기에 입력에 직류전원공급기와 출력에 전자부하기를 연결하여 사용한다. 안정적인 동작을 위해 LDC 보다 10%이상 큰 용량의 제품을 사용하며, 출력에 걸리는 전력을 100% 열로 소비하는 구조이다. 때문에 LDC를 테스트 위해 2개의 장비를 사용함에 따른 부피의 문제와 전자부하기의 발열에 따른 문제가 존재한다. 이에 본 논문에서는 부하장치에서 열로 소비되는 전기의 상당부분을 입력 측으로 되돌려 보내는 재생형 방식의 부하시험방법을 제안하고 재생형 부하 시험기의 효율 개선을 통하여 열로 소비된 전기의 80% 이상 절감을 실현하였다.