DOI QR코드

DOI QR Code

Effects of Inlet Water Temperature and Heat Load on Fan Power of Counter-Flow Wet Cooling Tower

입구 물온도와 열부하가 냉각탑의 팬동력에 미치는 영향 분석

  • Received : 2012.05.09
  • Accepted : 2012.12.18
  • Published : 2013.03.01

Abstract

In order to provide effective operating conditions for the fan in a wet cooling tower with film fill, a new program to search for the minimum fan power was developed using a model of the optimal total annual cost of the tower based on Merkel's model. In addition, a type of design map for a cooling tower was also developed. The inlet water temperature and heat load were considered as key parameters. The present program was first validated using several typical examples. The results showed that for a given heat load, a three-dimensional graph of the fan power (z-axis), mass flux of air (x-axis, minimum fan power), and inlet water temperature (y-axis, maximum of minimum fan power) showed a saddle configuration. The minimum fan power increased as the heat load increased. The conventionally known fact that the most effective cooling tower operation coincides with a high inlet water temperature and low air flow rate can be replaced by the statement that there exists an optimum mass flux of air corresponding to a minimum fan power for a given inlet water temperature, regardless of the heat load.

막충진재(film fill)를 갖는 냉각탑용 팬의 효율적인 운전조건을 제시하기 위하여, Merkel의 이론을 바탕으로 한 종전의 최적 총연간비용 모델을 사용하여 입구 물온도와 열부하에 따른 최소팬동력을 구하는 프로그램이 새로이 개발되었으며, 냉각탑의 설계 맵이 본 연구로부터 제시되었다. 전형적인 예들을 통하여 본 프로그램의 타당성이 입증되었다. 주어진 열부하에서 이들 팬동력(z 축)-공기질량플럭스(x 축, 최소팬동력 존재)-입구물온도(y 축, 최소팬동력의 최대값 존재)의 3차원 그래프는 말안장 형상으로 나타났다. 최소팬동력들은 열부하에 따라 증가하였다. 따라서, '고온수 유입과 저유량의 공기로 작동' 될 때가 항상 최소팬동력 조건이 아니며, '주어진 입구물온도에 대하여 최소팬동력에 대응하는 최적의 공기질량플럭스가 (열부하와 무관하게) 존재한다'는 사실이 본 연구결과로부터 밝혀졌다.

Keywords

References

  1. Rezaei, E., Shafiei, S. and Abdollahnezhad, A., 2010, "Reducing Water Consumption of an Industrial Plant Cooling Unit Using Hybrid Cooling Tower," Energy Conversion and Management, Vol. 51, No. 2, pp. 311-319. https://doi.org/10.1016/j.enconman.2009.09.027
  2. Rubio-Castro, E., Serna-Gonzalez, M. and Ponce-Ortega, J. M., 2010, "Optimal Design of Effluent-Cooling Systems Using a Mathematical Programming Model," Applied Thermal Engineering. Vol. 30, No. 14-15, pp. 2116-2126. https://doi.org/10.1016/j.applthermaleng.2010.05.021
  3. Kim, J. -K., Savulescu, L. and Smith, R., 2001, "Design of Cooling Systems for Effluent Temperature Reduction," Chemical Engineering Science, Vol. 56, No. 5, pp. 1811-1830. https://doi.org/10.1016/S0009-2509(00)00541-8
  4. Söylemez, M. S., 2001, "On the Optimum Sizing of Cooling Towers," Energy Conversion and Management, Vol. 42, No. 7, pp. 783-789. https://doi.org/10.1016/S0196-8904(00)00148-5
  5. Cortinovis, G. F., Paiva, J. L., Song, T. W., and Pinto, J. M., 2009, "A Systemic Approach for Optimal Cooling Tower Operation," Energy Conversion and Management, Vol. 50, No. 9, pp. 2200-2209. https://doi.org/10.1016/j.enconman.2009.04.033
  6. Serna-Gonzalez, M., Ponce-Ortega, J. M. and Jimenez- Gutierrez, A., 2010, "MINLP Optimization of Mechanical Draft Counter Flow Wet-Cooling Towers," Chemical Engineering Research and Design, Vol. 88, No. 5-6, pp. 614-625. https://doi.org/10.1016/j.cherd.2009.09.016
  7. Ponce-Ortega, J. M., Serna-Gonzalez, M. and Jiménez- Gutiérrez, A., 2010, "Optimization Model for Re- Circulating Cooling Water Systems," Computers & Chemical Engineering, Vol. 34, No. 2, pp. 177-195. https://doi.org/10.1016/j.compchemeng.2009.07.006
  8. Kloppers, J. C. and Kroger, D. G.., 2003, "Loss Coefficient Correlation for Wet-Cooling Tower Fills," Applied Thermal Engineering, Vol. 23, No. 17, pp. 2201-2211. https://doi.org/10.1016/S1359-4311(03)00201-1
  9. Kloppers, J. C. and Kröger, D. G.., 2005, "Refinement of the Transfer Characteristic Correlation of Wet-Cooling Tower Fills," Heat Transfer Engineering, Vol. 26, No. 4, pp. 35-41.
  10. ASHRAE, Handbook of Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc., Atlanta, GA2005, pp. 6.1-6.17.
  11. Klein, S.A., Engineering Equation Solver, F-Chart Software, Commercial Version 6.883-3D.